Volume 821 of the series Methods in Molecular Biology pp 1-14


Mammalian Target of Rapamycin: A Signaling Kinase for Every Aspect of Cellular Life

  • Thomas WeichhartAffiliated withDivision of Nephrology and Dialysis, Department of Internal Medicine III, Medical University Vienna Email author 

* Final gross prices may vary according to local VAT.

Get Access


The mammalian (or mechanistic) target of rapamycin (mTOR) is an evolutionarily conserved serine-threonine kinase that is known to sense the environmental and cellular nutrition and energy status. Diverse mitogens, growth factors, and nutrients stimulate the activation of the two mTOR complexes mTORC1 and mTORC2 to regulate diverse functions, such as cell growth, proliferation, development, memory, longevity, angiogenesis, autophagy, and innate as well as adaptive immune responses. Dysregulation of the mTOR pathway is frequently observed in various cancers and in genetic disorders, such as tuberous sclerosis complex or cystic kidney disease. In this review, I will give an overview of the current understanding of mTOR signaling and its role in diverse tissues and cells. Genetic deletion of specific mTOR pathway proteins in distinct tissues and cells broadened our understanding of the cell-specific roles of mTORC1 and mTORC2. Inhibition of mTOR is an established therapeutic principle in transplantation medicine and in cancers, such as renal cell carcinoma. Pharmacological targeting of both mTOR complexes by novel drugs potentially expand the clinical applicability and efficacy of mTOR inhibition in various disease settings.

Key words

mTOR Rapamycin Immunity Cancer Kinase