Skip to main content

The Four-Plate Test in Mice

  • Protocol
  • First Online:
Book cover Mood and Anxiety Related Phenotypes in Mice

Part of the book series: Neuromethods ((NM,volume 63))

Abstract

The four-plate test (FPT) is an animal model of anxiety based on spontaneous response. Animals are exposed to a novel environment. The exploration of this novel surrounding is suppressed by the delivery of mild electric foot shock contingent to quadrant crossing. Animal can only escape from this aversive situation by remaining motionless (passive avoidance). This model of conditioned fear presents several advantages. It is a simple and quick procedure and there is no need for prior training of animals. In this test, benzodiazepines (BZDs) induce a strong antipunishment effect, which has been proposed to be a reflection of their anxiolytic activity. The FPT also allows the detection of anxiolytic effects of other non-BZD anxiolytic compounds such as selective serotonin (5-HT) reuptake inhibitors (SSRI) or mixed serotonin and noradrenaline (NA) reuptake inhibitors (SNRI).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boissier JR, Simon P, Aron C (1968) A new method for rapid screening of minor tranquillizers in mice. Eur J Pharmacol 4:145–151

    Article  PubMed  CAS  Google Scholar 

  2. Liao JF, Hung WY, Chen CF (2003) Anxiolytic-like effects of baicalein and baicalin in the vogel conflict test in mice. Eur J Pharmacol 464:141–146

    Article  PubMed  CAS  Google Scholar 

  3. Umezu T (1999) Effects of psychoactive drugs in the vogel test in mice. Jpn J Pharmacol 80:111–118

    Article  PubMed  CAS  Google Scholar 

  4. Bourin M, Hascoët M, Mansouri B, Colombel MC, Bradwejn J (1992) Comparison of behavioral effects after single and repeated administrations of four benzodiazepines in three mice behavioral models. J Psychiatry Neurosci 17:72–77

    PubMed  CAS  Google Scholar 

  5. Hascoët M and Bourin M (1997) Anticonflict effect of alpidem as compared with the benzodiazepine alprazolam in Rats. Pharmacol Biochem Behav 2:317–324

    Article  Google Scholar 

  6. Jones GH, Schneider C, Schneider HH, Seidler J, Cole BJ and Stephens DN (1994) Comparison of several benzodiazepine receptor ligands in two models of anxiolytic activity in the mouse: an analysis based on fractional receptor occupancies. Psychopharmacol (Ber) 114:191–199

    Article  CAS  Google Scholar 

  7. Sills GJ (2006) The mechanisms of action of gabapentine and pregabalin. Curr Opin Pharmacol. 6:108–113

    Article  PubMed  CAS  Google Scholar 

  8. Taylor CP, Gee NS, Su TZ, Kocsis JD, Welty DF, Brown JP, Dooley DJ, Boden P, Singh L (1998) A summary of mechanistic hypotheses of gabapentine pharmacology. Epilepsy Res 29:233–249

    Article  PubMed  CAS  Google Scholar 

  9. Götz E, Feuerstein TJ, Lais A, Meyer DK (1993) Effects of gabapentine on release of gamma-aminobutyric acid from slices of rat neostriatum. Arzneimittelforschung 43:636–638

    PubMed  Google Scholar 

  10. Roberto M, Gilpin NW, O’Dell LE, Cruz MT, Morse AC, Siggins GR, Koob GF (2008) Cellular and behavioral interactions of gabapentine with alcohol dependence. J Neurosci 28:5762–5771

    Article  PubMed  CAS  Google Scholar 

  11. Partyka A, Kłodzińska A, Szewczyk B, Wierońska JM, Chojnacka-Wójcik E, Librowski T, Filipek B, Nowak G, Pilc A (2007) Effects of GABAB receptor ligands in rodent tests of anxiety-like behavior. Pharmacol Rep 59:757–762

    PubMed  CAS  Google Scholar 

  12. Feighner JP (1999) Overview of antidepressants currently used to treat anxiety disorders. J Clin Psychiatry 60:18–22

    Article  PubMed  CAS  Google Scholar 

  13. Gorman JM, Kent JM (1999) SSRIs and SNRIs: broad spectrum of efficacy beyond major depression. J Clin Psychiatry 60:33–38

    Article  PubMed  Google Scholar 

  14. Zohar J, Westenberg HG (20004) Anxiety disorders: a review of tricyclic antidepressants and selective serotonin reuptake inhibitors. Acta Psychiatr Scand Suppl 03:39–49

    Google Scholar 

  15. Rocca P, Fonzo V, Scotta M, Zanalda E, Ravizza L (1997) Paroxetine efficacy in the treatment of generalised anxiety disorder. Acta Psychiatr Scand 95: 444–450

    Article  PubMed  CAS  Google Scholar 

  16. File SE (1985). Animal models for predicting clinical efficacy of anxiolytic drugs: social behaviour. Neuropsychobiology 13:55–62

    Article  PubMed  CAS  Google Scholar 

  17. Linnoila M, Eckhardt M, Durcan M, Lister R, Martin P (1987) Interactions of serotonin with ethanol: clinical and animal studies. Psychopharmacology Bull 23:452–457

    CAS  Google Scholar 

  18. Chopin P, Briley M (1987) Animal models of anxiety: the effects of compounds that modify 5-HT neurotransmission. TIPS 8:383–389

    CAS  Google Scholar 

  19. Bourin M, Redrobe JP, Hascoet M, Colombel MC, Baker GB (1996) A schematic representation of the psychopharmacological profile of antidepressants. Prog Neuro-Psychopharmacol Biol Psychiat 20:1389–1402

    Article  CAS  Google Scholar 

  20. Handley SL, McBlane JW (1992) Opposite effects of fluoxetine in two animal models of anxiety. Br J Pharmacol 107:446P (suppl)

    Google Scholar 

  21. Hascoët M, Bourin M, Colombel MC, Fiocco AJ, Baker GB (2000) Anxiolytic-like effects of antidepressants after acute administration in a four-plate test in mice. Pharmacol Biochem Behav 65:339–344

    Article  PubMed  Google Scholar 

  22. Hyttel J (1996) Pharmacological characterisation of selective serotonin reuptake inhibitors (SSRIs). Int Clin Psychopharmacol 9:19–26

    Article  Google Scholar 

  23. Redrobe JP, Bourin M, Colombel MC, Baker GB(1998) Dose-dependent noradrenergic and serotonergic properties of venlafaxine in animal models indicative of antidepressant activity. Psychopharmacology 138:1–8

    Article  PubMed  CAS  Google Scholar 

  24. Griebel G (1996) Variability in the effect of 5-HT related compounds in experimental models of anxiety : evidence for multiple mechanism of 5-HT in anxiety or never-ending story?. Polish J Pharmacol 48: 129–136

    CAS  Google Scholar 

  25. Eison MS (1989) The new generation of serotonergic anxiolytics: possible clinical roles. Psychopathology 22:13–20

    Article  PubMed  Google Scholar 

  26. Ables AZ, Baughman OL 3rd (2003) Antidepressants: update on new agents and indications. Am Fam Physician 67:547–554

    PubMed  Google Scholar 

  27. Bourin M, Lambert O (2002) Pharmacotherapy of anxious disorders. Hum Psychopharmacol 17:383–400

    Article  PubMed  CAS  Google Scholar 

  28. Nemeroff CB (2003) Anxiolytics: past, present, and future agents. J Clin Psychiatry 64:3–6

    Article  PubMed  CAS  Google Scholar 

  29. Vaswani M, Linda FK, Ramesh S (2003) Role of selective serotonin reuptake inhibitors in sychiatric disorders: a comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry 27:85–102

    CAS  Google Scholar 

  30. Lucki I (1996) Serotonin receptor specificity in anxiety disorders. J Clin Psychiatry 7:5–10

    Google Scholar 

  31. Passchier J, van Waarde A (2001) Visualisation of serotonin-1A (5-HT1A) receptors in the central nervous system. Eur J Nucl Med 28:113–129

    Article  PubMed  CAS  Google Scholar 

  32. Bell C, Abrams J, Nutt D (2001) Tryptophan depletion and its implications for psychiatry. Br J Psychiatry 178:399–405

    Article  PubMed  CAS  Google Scholar 

  33. Murphy DL, Wichems C, Li Q, Heils A (1999) Molecular manipulations as tools for enhancing our understanding of 5-HT neurotransmission. Trends Pharmacol Sci 20:246–252

    Article  PubMed  CAS  Google Scholar 

  34. Zhuang X, Gross C, Santarelli L, Compan V, Trillat AC, Hen R (1999) Altered emotional states in knockout mice lacking 5-HT1A or 5-HT1B receptors. Neuropsychopharmacology 21:52 S-60 S

    PubMed  CAS  Google Scholar 

  35. Griebel G (1995) 5-Hydroxytryptamine-interacting drugs in animal models of anxiety disorders: more than 30 years of research. Pharmacol Ther 65:319–395

    Article  PubMed  CAS  Google Scholar 

  36. Millan MJ (2003) The neurobiology and control of anxious states. Prog Neurobiol 70:83–244.

    Article  PubMed  CAS  Google Scholar 

  37. Hascoët M, Bourin M, Couetoux du Tertre A (1997) Influence of prior experience on mice behavior using the four-plate test. Pharmacol Biochem Behav 58:1131–1138

    Article  PubMed  Google Scholar 

  38. Hascoët M, Bourin M, Nic Dhonnchadha BA (2000) The influence of buspirone, and its metabolite 1-PP, on the activity of paroxetine in the mouse light/dark paradigm and four plates test. Pharmacol Biochem Behav 67:45–53

    Article  PubMed  Google Scholar 

  39. Charney DS, Woods SW, Goodman WK, Heninger GR (1987) Serotonin function in anxiety. II. Effects of the serotonin agonist MCPP in panic disorder patients and healthy subjects. Psychopharmacology (Berl) 92:14–24

    Article  CAS  Google Scholar 

  40. Hensman R, Guimarães FS, Wang M, Deakin JF (1991) Effects of ritanserin on ­aversive classical conditioning in humans. Psychopharmacology (Berl) 104:220–224

    Article  CAS  Google Scholar 

  41. Griebel G, Perrault G, Sanger DJ (1997) A comparative study of the effects of selective and non-selective 5-HT2 receptor subtype antagonists in rat and mouse models of anxiety. Neuropharmacology 36:793–802

    Article  PubMed  CAS  Google Scholar 

  42. Nic Dhonnchadha BA, Bourin M, Hascoët M (2003) Anxiolytic-like effects of 5-HT2 ligands on three mouse models of anxiety. Behav Brain Res 140:203–214

    Article  PubMed  CAS  Google Scholar 

  43. Nic Dhonnchadha BA, Hascoët M, Jolliet P, Bourin M (2003) Evidence for a 5-HT2A receptor mode of action in the anxiolytic-like properties of DOI in mice. Behav Brain Res 147:175–184

    Article  PubMed  CAS  Google Scholar 

  44. Borsini F, Brambilla A, Cesana R, Donetti A (1993) The effect of DAU 6215, a novel 5HT-3 antagonist, in animal models of anxiety. Pharmacol Res 27:151–164

    Article  PubMed  CAS  Google Scholar 

  45. Dooley DJ, Klamt I (1993) Differential profile of the CCKB receptor antagonist CI-988 and diazepam in the four-plate test. Psychopharmacology (Berl) 112:452–454

    Article  CAS  Google Scholar 

  46. Kłodzińska A, Tatarczyńska E, Stachowicz K, Chojnacka-Wójcik E (2004) The anxiolytic-like activity of AIDA (1-aminoindan-1,5-dicarboxylic acid), an mGLu 1 receptor antagonist. J Physiol Pharmacol 55:113–126

    PubMed  Google Scholar 

  47. Kłodzińska A, Chojnacka-Wójcik E, Pałucha A, Brański P, Popik P, Pilc A (1999) Potential anti-anxiety, anti-addictive effects of LY 354740, a selective group II glutamate metabotropic receptors agonist in animal models. Neuropharmacology 38:1831–1839

    Article  PubMed  Google Scholar 

  48. Rajarao SJ, Platt B, Sukoff SJ, Lin Q, Bender CN, Nieuwenhuijsen BW, Ring RH, Schechter LE, Rosenzweig-Lipson S, Beyer CE (2007) Anxiolytic-like activity of the non-selective galanin receptor agonist, galnon. Neuropeptides 41:307–320

    Article  PubMed  CAS  Google Scholar 

  49. Klodzinska A, Tatarczyńska E, Chojnacka-Wójcik E, Nowak G, Cosford ND, Pilc A (2004) Anxiolytic-like effects of MTEP, a potent and selective mGlu5 receptor agonist does not involve GABA(A) signaling. Neuropharmacology 47:342–350

    Article  PubMed  CAS  Google Scholar 

  50. Tatarczyńska E, Klodzińska A, Chojnacka-Wójcik E, Palucha A, Gasparini F, Kuhn R, Pilc A (2001) Potential anxiolytic- and antidepressant-like effects of MPEP, a potent, selective and systemically active mGlu5 receptor antagonist. Br J Pharmacol 132:1423–1430

    Article  PubMed  Google Scholar 

  51. Stachowicz K, Brañski P, Kłak K, van der Putten H, Cryan JF, Flor PJ, Andrzej P (2008) Selective activation of metabotropic G-protein-coupled glutamate 7 receptor elicits anxiolytic-like effects in mice by modulating GABAergic neurotransmission. Behav Pharmacol 19:597–603

    Article  PubMed  CAS  Google Scholar 

  52. Sanger DJ, Joly D (1991) The effects of NMDA antagonists on punished exploration in mice. Behav Pharmacol 2:57–63

    PubMed  Google Scholar 

  53. Griebel G, Simiand J, Steinberg R, Jung M, Gully D, Roger P, Geslin M, Scatton B, Maffrand JP, Soubrié P (2002) 4-(2-Chloro-4-methoxy-5-methylphenyl)-N-[(1 S)-2-cyclopropyl-1-(3-fluoro-4-methylphenyl)ethyl]5-methyl-N-(2-propynyl)-1, 3-thiazol-2-amine hydrochloride (SSR125543A), a potent and selective corticotrophin-releasing factor(1) receptor antagonist. II. Characterization in rodent models of stress-related disorders. J Pharmacol Exp Ther 301:333–345

    Article  PubMed  CAS  Google Scholar 

  54. Leonard SK, Dwyer JM, Sukoff Rizzo SJ, Platt B, Logue SF, Neal SJ, Malberg JE, Beyer CE, Schechter LE, Rosenzweig-Lipson S, Ring RH (2008) Pharmacology of neuropeptide S in mice: therapeutic relevance to anxiety ­disorders. Psychopharmacology (Berl) 197: 601–611

    Article  CAS  Google Scholar 

  55. Serradeil-Le Gal C, Wagnon J 3 rd, Tonnerre B, Roux R, Garcia G, Griebel G, Aulombard A (2005) An overview of SSR149415, a selective nonpeptide vasopressin V(1b) receptor antagonist for the treatment of stress-related disorders. CNS Drug Rev 11:53–68

    PubMed  CAS  Google Scholar 

  56. Przegaliński E, Tatarczyńska E, Chojnacka-Wójcik E (1998) Anxiolytic- and antidepressant-like effects of an antagonist at glycineB receptors. Pol J Pharmacol 50:349–354

    PubMed  Google Scholar 

  57. Ring RH, Malberg JE, Potestio L, Ping J, Boikess S, Luo B, Schechter LE, Rizzo S, Rahman Z, Rosenzweig-Lipson S (2006) Anxiolytic-like activity of oxytocin in male mice: behavioral and autonomic evidence, therapeutic implications. Psychopharmacology (Berl) 185:218–225

    Article  CAS  Google Scholar 

  58. Malberg JE, Platt B, Rizzo SJ, Ring RH, Lucki I, Schechter LE, Rosenzweig-Lipson S (2007) Increasing the levels of insulin-like growth factor-I by an IGF binding protein inhibitor produces anxiolytic and antidepressant-like effects. Neuropsychopharmacology 32:2360–2368

    Article  PubMed  CAS  Google Scholar 

  59. Hughes ZA, Liu F, Platt BJ, Dwyer JM, Pulicicchio CM, Zhang G, Schechter LE, Rosenzweig-Lipson S, Day M (2008) WAY-200070, a selective agonist of estrogen receptor beta as a potential novel anxiolytic/antidepressant agent. Neuropharmacology 54:1136–1142

    Article  PubMed  CAS  Google Scholar 

  60. Foreman MM, Hanania T, Eller M (2009) Anxiolytic effects of lamotrigine and JZP-4 in the elevated plus maze and in the four plate conflict test. Eur J Pharmacol 14:602:316–320

    Article  Google Scholar 

  61. Stemmelin J, Cohen C, Terranova JP, Lopez-Grancha M, Pichat P, Bergis O, Decobert M, Santucci V, Françon D, Alonso R, Stahl SM, Keane P, Avenet P, Scatton B, le Fur G, Griebel G (2008) Stimulation of the beta3-Adrenoceptor as a novel treatment strategy for anxiety and depressive disorders. Neuropsychophar­macology 33:574–587

    Article  PubMed  CAS  Google Scholar 

  62. Wesołowska A, Nikiforuk A, Stachowicz K, Tatarczyńska E (2006) Effect of the selective 5-HT7 receptor antagonist SB 269970 in animal models of anxiety and depression. Neuropharmacology 51:578–586

    Article  PubMed  Google Scholar 

  63. Wesołowska A, Nikiforuk A (2007) Effects of the brain-penetrant and selective 5-HT6 receptor antagonist SB-399885 in animal models of anxiety and depression. Neuropharmacology 52:1274–1283

    Article  PubMed  Google Scholar 

  64. Grisel JE, Fleshner M, Watkins LR, Maier SF (1993) Opioid and nonopioid interactions in two forms of stress-induced analgesia. Pharmacol Biochem Behav 45:161–172

    Article  PubMed  CAS  Google Scholar 

  65. Fardin V, Oliveras JL, Besson JM (1984) A reinvestigation of the analgesic effects induced by stimulation of the periaqueductal gray matter in the rat: IR The production of behavioral side effects together with analgesia. Brain Res 306:105–123

    Article  PubMed  CAS  Google Scholar 

  66. Jacob JJ, Tremblay EC, Colombel MC (1994) Enhancement of nociceptive reactions by naloxone in mice and rats. Psychopharmacologia 37:217–223

    Article  Google Scholar 

  67. Espejo EF, Mir D (1993) Structure of the rat’s behaviour in the hot plate test. Behav Brain Res 56:171–176

    Article  PubMed  CAS  Google Scholar 

  68. Espejo EF, Stinus L, Cador M, Mir D (1994) Effects of morphine and naloxone on behaviour in the hot plate test: an ethopharmacological study in the rat. Psychopharmacology 113:500–510

    Article  PubMed  CAS  Google Scholar 

  69. Ripoll N, Hascoët M, Bourin M (2006) The four-plates test: anxiolytic or analgesic paradigm? Prog Neuropsychopharmacol Biol Psychiatry 30:873–880

    Google Scholar 

  70. Drugan RC, Ryan SM, Minor TR, Maier SF (1984) Librium prevents the analgesia and shuttlebox escape deficit typically observed following inescapable shock. Pharmacol Biochem Behav 21:749–754

    Article  PubMed  CAS  Google Scholar 

  71. Gatch MB (1999) Effects of benzodiazepines on acute and chronic ethanol-induced nociception in rats. Alcohol Clin Exp Res 23:1736–1743

    Article  PubMed  CAS  Google Scholar 

  72. Nadeson R, Guo Z, Porter V, Gent JP, Goodchild CS (1996) Gamma-aminobutyric acidA receptors and spinally mediated antinociception in rats. J Pharmacol Exp Ther 278:620–626

    PubMed  CAS  Google Scholar 

  73. Pakulska W, Czarnecka E (2001) Effect of diazepam and midazolam on the antinociceptive effect of morphine, metamizol and indomethacin in mice. Pharmazie 56:89–91

    PubMed  CAS  Google Scholar 

  74. Rosland JH, Hole K (1990) Benzodiazepine-induced antagonism of opioid antinociception may be abolished by spinalization or blockade of the benzodiazepine receptor. Pharmacol Biochem Behav 37:505–509

    Article  PubMed  CAS  Google Scholar 

  75. Borges PC, Coimbra NC, Brandao ML (1988) Independence of aversive and pain mechanisms in the dorsal periaqueductal gray matter of the rat. Braz J Med Biol Res 21:1027–1031

    PubMed  CAS  Google Scholar 

  76. Fasmer OB, Hunskaar S, Hole K (1989) Antinociceptive effects of serotonergic reuptake inhibitors in mice. Neuropharmacology 28:1363–1366

    Article  PubMed  CAS  Google Scholar 

  77. Otsuka N, Kiuchi Y, Yokogawa F, Masuda Y, Oguchi K, Hosoyamada A (2001) Antinociceptive efficacy of antidepressants: assessment of five antidepressants and four monoamine receptors in rats. J Anesth 15:154–158

    Article  PubMed  CAS  Google Scholar 

  78. Yokogawa F, Kiuchi Y, Ishikawa Y, Otsuka N, Masuda Y, Oguchi K, et al.(2002) An investigation of monoamine receptors involved in antinociceptive effects of antidepressants. Anesth Analg 95:163–168

    Article  PubMed  CAS  Google Scholar 

  79. Okuda K, Takanishi T, Yoshimoto K, Ueda S (2003) Trazodone hydrochloride attenuates thermal hyperalgesia in a chronic constriction injury rat model. Eur J Anaesthesiol 20:409–415

    Article  PubMed  CAS  Google Scholar 

  80. Schreiber S, Backer MM, Herman I, Shamir D, Boniel T, Pick CG (2000) The antinociceptive effect of trazodone in mice is mediated through both mu-opioid and serotonergic mechanisms. Behav Brain Res 114:51–56

    Article  PubMed  CAS  Google Scholar 

  81. Bourin M, Masse F, Dailly E, Hascoët M (2005) Anxiolytic-like effect of milnacipran in the four-plate test in mice: mechanism of action. Pharmacol Biochem Behav 81:645–656

    Article  PubMed  CAS  Google Scholar 

  82. David DJ, Renard CE, Jolliet P, Hascoet M, Bourin M (2003) Antidepressant-like effects in various mice strains in the forced swimming test. Psychopharmacology 166:373–382

    PubMed  CAS  Google Scholar 

  83. Prado WA, Roberts MH (1985) An assessment of the antinociceptive and aversive effects of stimulating identified sites in the rat brain. Brain Res 340:219–228

    Article  PubMed  CAS  Google Scholar 

  84. Beyer CE, Dwyer JM, Platt BJ, Neal S, Luo B, Ling HP, Lin Q, Mark RJ, Rosenzweig-Lipson S, Schechter LE (2010) Angiotensin IV elevates oxytocin levels in the rat amygdala and produces anxiolytic-like activity through subsequent oxytocin receptor activation. Psychopharmacology (Berl) 209:303–311

    Article  CAS  Google Scholar 

  85. Czopek A, Byrtus H, Kołaczkowski M, Pawłowski M, Dybała M, Nowak G, Tatarczyńska E, Wesołowska A, Chojnacka-Wójcik E (2010) Synthesis and pharmacological evaluation of new 5-(cyclo)alkyl-5-phenyl- and 5-spiroimidazolidine-2,4-dione derivatives. Novel 5-HT1A receptor agonist with potential antidepressant and anxiolytic activity. Eur J Med Chem 45:1295–1303

    Article  PubMed  CAS  Google Scholar 

  86. Massé F, Hascoët M, Bourin M (2005) alpha2-Adrenergic agonists antagonise the anxiolytic-like effect of antidepressants in the four-plate test in mice. Behav Brain Res 164:17–28

    Article  PubMed  Google Scholar 

  87. Massé F, Hascoët M, Dailly E, Bourin M (2006) Effect of noradrenergic system on the anxiolytic-like effect of DOI (5-HT2A/2 C agonists) in the four-plate test. Psychopharmacology (Berl) 83:471–481

    Article  Google Scholar 

  88. Nic Dhonnchadha BA, Ripoll N, Clenet F, Hascoët M, Bourin M (2005) Implication of 5-HT2 receptor subtypes in the mechanism of action of antidepressants in the four plates test. Psychopharmacology (Berl) 179:418–429

    Article  CAS  Google Scholar 

  89. Ripoll N, Hascoët M, Bourin M (2006) Implication of 5-HT(2A) subtype receptors in DOI activity in the four-plates test-retest paradigm in mice. Behav Brain Res 166:131–139

    Article  PubMed  CAS  Google Scholar 

  90. Massé F, Petit-Démoulière B, Dubois I, Hascoët M, Bourin M (2008) Anxiolytic-like effect of DOI microinjections into the hippocampus (but not the amygdala nor the PAG) in the mice test. Behav. Brain Res 188: 291–297

    PubMed  Google Scholar 

  91. Petit-Demoulière B, Massé F, Cogrel N, Hascoët M, Bourin M (2009) Brain structures implicated in the four-plate test in naïve and experienced Swiss mice using injection of diazepam and the 5-HT2A agonist DOI. Behav Brain Res 204:200–205

    Article  PubMed  Google Scholar 

  92. Ripoll N, Nic Dhonnchadha BA, Sébille V, Bourin M, Hascoët M (2005) The four-plates test-retest paradigm to discriminate anxiolytic effects. Psychopharmacology (Berl) 180:73–83

    Article  CAS  Google Scholar 

  93. File SE (1990) “One-trial tolerance to the anxiolytic effects of chlordiazepoxide in the plus-maze.” Psychopharmacology (Berl) 100:281–282

    Article  CAS  Google Scholar 

  94. Petit-Demoulière B, Hascoët M, Bourin M (2008) Factors triggering abolishment of benzodiazepines effects in the Four-Plate Test–retest in mice. Eur Neuropsychopharmacol 18:41–47

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michel Bourin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Hascoët, M., Bourin, M. (2011). The Four-Plate Test in Mice. In: Gould, T. (eds) Mood and Anxiety Related Phenotypes in Mice. Neuromethods, vol 63. Humana Press. https://doi.org/10.1007/978-1-61779-313-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-313-4_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-312-7

  • Online ISBN: 978-1-61779-313-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics