Skip to main content

Assessment of Glutathione Homeostasis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 758))

Abstract

The tripeptide glutathione (γ-glutamylcysteinylglycine; GSH) is the most abundant antioxidant thiol in the brain. GSH plays a critical role in protecting brain cells from oxidative stress and xenobiotics, as well as maintaining the thiol redox state. High levels of GSH are present in the central nervous system, particularly in astrocytes. GSH is synthesized into two enzymatic steps, the first, and the rate-limiting one, is catalyzed by glutamate–cysteine ligase (GCL) to form a dipeptide which is then converted to GSH by GSH synthetase. In this chapter, we describe assays for the measurements of GSH levels and GCL activity. The first spectrophotometric assay is based on the affinity of 2,3-naphthalenedicarboxaldehyde (NDA) for GSH. In the second assay, GSH levels are measured after being derivatized using the fluorescent thiol reactive compound monobromobimane (MBB) and are detected by high-performance liquid chromatography (HPLC). The third assay allows the assessment of GCL activity, also by HPLC.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Dringen, R. (2000) Metabolism and functions of glutathione in brain. Prog Neurobiol. 62, 649–671.

    Article  PubMed  CAS  Google Scholar 

  2. Kosower, N.S., Kosower, E.M. (1978) The glutathione status of cells. Int Rev Cytol. 54, 109–160.

    Article  PubMed  CAS  Google Scholar 

  3. Clarke, D.D., Sokolo, L. (1999). Circulation and energy metabolism of the brain. In: Sigel, G.J., Agrano, B.W., Albers, R.W., Fisher, S.K., Uhler, M.D. (Eds.), Basic Neurochemistry: Molecular, Cellular and Medical Aspects. Lippincott-Raven, Philadelphia, 637–669.

    Google Scholar 

  4. Cooper, A.J.L. (1997) Glutathione in the brain: disorders of glutathione metabolism. In: Rosenberg, R.N., Prusiner, S.B., DiMauro, S., Barchi, R.L., Kunk, L.M. (Eds.), The Molecular and Genetic Basis of Neurological Disease. Butterworth- Heinemann, Boston, 1195–1230.

    Google Scholar 

  5. Gerlach, M., Ben-Shachar, D., Riederer, P., Youdim, M.B.H. (1994) Altered brain metabolism of iron as a cause of neurodegenerative diseases? J Neurochem. 63, 793–807.

    Article  PubMed  CAS  Google Scholar 

  6. Chance, B., Sies, H., Boveris, A. (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev. 59, 527–605.

    PubMed  CAS  Google Scholar 

  7. Aoyama, K., Watabe, M., Nakaki, T. (2008) Regulation of neuronal glutathione synthesis. J Pharmacol Sci. 108, 227–238.

    Article  PubMed  CAS  Google Scholar 

  8. Jenner, P., Olanow, C.W. (1998) Under­standing cell death in Parkinson’s disease. Ann Neurol 44, S72–S84.

    PubMed  CAS  Google Scholar 

  9. Retz, W., Gsell, W., Munch, G., Rosler, M., Riederer, P. (1998) Free radicals in Alzheimer’s disease. J. Neural Transm. 54, 221–236.

    Article  CAS  Google Scholar 

  10. Dean, O.M., van den Buuse, M., Bush, A.I. Copolop, D.L., Ng, F., Dodd, S., Berk, M. (2009) A role for glutathione in the pathophysiology of bipolar disorders and schizophrenia? Animal models and relevance to clinical practice. Curr Med Chem. 16, 2965–2976.

    Article  PubMed  CAS  Google Scholar 

  11. Browne, S.E., Ferrante, R.J., Beal, M.F. (1999) Oxidative stress in Huntington’s disease. Brain Pathol. 9, 147–163.

    Article  PubMed  CAS  Google Scholar 

  12. White C.C., Viernes H., Krejsa C.M., Botta D., Kavanagh T.J. (2003) Fluorescence-based microtiter plate assay for glutamate-cysteine ligase activity. Anal Biochem. 318, 175–180.

    Article  PubMed  CAS  Google Scholar 

  13. Thompson S.A., White C.C., Krejsa C.M., Eaton D.L., Kavanagh, T.J. (2000) Modulation of glutathione and glutamate-l-cysteine ligase by methylmercury during mouse development. Toxicol Sci. 57, 141–146.

    Article  PubMed  CAS  Google Scholar 

  14. White C.C., Krejsa C.M., Eaton D.L., Kavanagh T.J. (1999) HPLC-based assay for enzyme of glutathione biosynthesis. Curr Protoc Toxicol. 6.5.1–6.5.1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio G. Costa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Giordano, G., White, C.C., Costa, L.G. (2011). Assessment of Glutathione Homeostasis. In: Costa, L., Giordano, G., Guizzetti, M. (eds) In Vitro Neurotoxicology. Methods in Molecular Biology, vol 758. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-170-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-170-3_14

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-169-7

  • Online ISBN: 978-1-61779-170-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics