Skip to main content

Flow Cytometric FRET Analysis of Protein Interaction

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 699))

Abstract

Investigation of protein–protein interactions in situ in living or intact cells gains expanding importance as structure/function relationships proposed from bulk biochemistry and molecular modeling experiments require demonstration at the cellular level. Fluorescence resonance energy transfer (FRET)-based methods are excellent tools for determining proximity and supramolecular organization of biomolecules at the cell surface or inside the cell. This could well be the basis for the increasing popularity of FRET; in fact, the number of publications exploiting FRET has doubled in the past 5 years. In this chapter, we intend to provide a generally useable protocol for measuring FRET in flow cytometry. After a concise theoretical introduction, recipes are provided for successful labeling techniques and measurement approaches. The simple, quenching-based population-level measurement; the classic ratiometric, intensity-based technique providing cell-by-cell actual FRET efficiencies, and a more advanced version of the latter, allowing for cell-by-cell autofluorescence correction, are described. Finally, points of caution are given to help design proper experiments and critically interpret the results.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Szöllősi, J., Damjanovich, S., and Mátyus, L. (1998) Application of fluorescence resonance energy transfer in the clinical laboratory: routine and research. Cytometry 34, 159–79.

    Article  Google Scholar 

  2. Bastiaens, P. I. H. and Squire, A. (1999) Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol 9, 48–52.

    Article  CAS  Google Scholar 

  3. Clegg, R. M. (2002) FRET tells us about proximities, distances, orientations and dynamic properties. J Biotechnol 82, 177–9.

    CAS  Google Scholar 

  4. Vereb, G., Szöllősi, J., Matkó, J., et al. (2003) Dynamic, yet structured: the cell membrane three decades after the Singer-Nicolson model. Proc Natl Acad Sci U S A 100, 8053–8.

    Article  CAS  Google Scholar 

  5. Berney, C. and Danuser, G. (2003) FRET or No FRET: a quantitative comparison. Biophys J 84, 3992–4010.

    Article  CAS  Google Scholar 

  6. Förster, T. (1946) Energiewanderung und Fluoreszenz. Naturwissenschaften 6, 166–75.

    Article  Google Scholar 

  7. Stryer, L. and Haugland, R. P. (1967) Energy transfer: a spectroscopic ruler. Proc Nat Acad Sci U S A 58, 719–26.

    Article  CAS  Google Scholar 

  8. Dexter, D. L. (1953) A theory of sensitized luminescence in solids. J Chem Phys 21, 836–50.

    Article  CAS  Google Scholar 

  9. Jares-Erijman, E. A. and Jovin, T. M. (2003) FRET imaging. Nat Biotechnol 21, 1387–95.

    Article  CAS  Google Scholar 

  10. Szabó, A., Horváth, G., Szöllősi, J., and Nagy, P. (2008) Quantitative characterization of the large-scale association of ErbB1 and ErbB2 by flow cytometric homo-FRET measurements. Biophys J 95, 2086–96.

    Article  Google Scholar 

  11. Horváth, G., Petrás, M., Szentesi, G., et al. (2005) Selecting the right fluorophores and flow cytometer for fluorescence resonance energy transfer measurements. Cytometry A 65, 148–57.

    Google Scholar 

  12. Sebestyén, Z., Nagy, P., Horváth, G., et al. (2002) Long wavelength fluorophores and cell-by-cell correction for autofluorescence significantly improves the accuracy of flow cytometric energy transfer measurements on a dual-laser benchtop flow cytometer. Cytometry 48, 124–35.

    Article  Google Scholar 

  13. Szentesi, G., Horváth, G., Bori, I., et al. (2004) Computer program for determining fluorescence resonance energy transfer efficiency from flow cytometric data on a cell-by-cell basis. Comput Methods Programs Biomed 75, 201–11.

    Article  Google Scholar 

  14. Szöllősi, J., Trón, L., Damjanovich, S., Helliwell, S. H., Arndt-Jovin, D., and Jovin, T. M. (1984) Fluorescence energy transfer measurements on cell surfaces: a critical comparison of steady-state fluorimetric and flow cytometric methods. Cytometry 5, 210–6.

    Article  Google Scholar 

  15. Damjanovich, S., Trón, L., Szöllősi, J., et al. (1983) Distribution and mobility of murine histocompatibility H-2Kk antigen in the cytoplasmic membrane. Proc Natl Acad Sci U S A 80, 5985–9.

    Article  CAS  Google Scholar 

  16. Trón, L., Szöllősi, J., Damjanovich, S., Helliwell, S. H., Arndt-Jovin, D. J., and Jovin, T. M. (1984) Flow cytometric measurement of fluorescence resonance energy transfer on cell surfaces. Quantitative evaluation of the transfer efficiency on a cell-by-cell basis. Biophys J 45, 939–46.

    Article  Google Scholar 

  17. Nagy, P., Bene, L., Hyun, W. C., et al. (2005) Novel calibration method for flow cytometric fluorescence resonance energy transfer measurements between visible fluorescent proteins. Cytometry A 67, 86–96.

    Google Scholar 

  18. Dale, R. E., Eisinger, J., and Blumberg, W. E. (1979) The orientational freedom of molecular probes. The orientation factor in intramolecular energy transfer. Biophys J 26, 161–93.

    Article  CAS  Google Scholar 

  19. Batard, P., Szöllősi, J., Luescher, I., Cerottini, J. C., MacDonald, R., and Romero, P. (2002) Use of phycoerythrin and allophycocyanin for fluorescence resonance energy transfer analyzed by flow cytometry: advantages and limitations. Cytometry 48, 97–105.

    Article  CAS  Google Scholar 

  20. Wolber, P. K. and Hudson, B. S. (1979) An analytic solution to the Forster energy transfer problem in two dimensions. Biophys J 28, 197–210.

    Article  CAS  Google Scholar 

  21. Dewey, T. G. and Hammes, G. G. (1980) Calculation on fluorescence resonance energy transfer on surfaces. Biophys J 32, 1023–35.

    Article  CAS  Google Scholar 

  22. Snyder, B. and Freire, E. (1982) Fluorescence energy transfer in two dimensions. A numeric solution for random and nonrandom distributions. Biophys J 40, 137–48.

    Article  CAS  Google Scholar 

  23. Szöllősi, J., Damjanovich, S., Balázs, M., et al. (1989) Physical association between MHC class I and class II molecules detected on the cell surface by flow cytometric energy transfer. J Immunol 143, 208–13.

    Google Scholar 

  24. Kenworthy, A. K. and Edidin, M. (1998) Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 A using imaging fluorescence resonance energy transfer. J Cell Biol 142, 69–84.

    Article  CAS  Google Scholar 

  25. Shaner, N. C., Steinbach, P. A., and Tsien, R. Y. (2005) A guide to choosing fluorescent proteins. Nat Methods 2, 905–9.

    Article  CAS  Google Scholar 

  26. Patterson, G. H., Piston, D. W., and Barisas, B. G. (2000) Forster distances between green fluorescent protein pairs. Anal Biochem 284, 438–40.

    Article  CAS  Google Scholar 

  27. Ai, H. W., Hazelwood, K. L., Davidson, M. W., and Campbell, R. E. (2008) Fluorescent protein FRET pairs for ratiometric imaging of dual biosensors. Nat Methods 5, 401–3.

    Article  CAS  Google Scholar 

  28. Shcherbo, D., Souslova, E. A., Goedhart, J., et al. (2009) Practical and reliable FRET/FLIM pair of fluorescent proteins. BMC Biotechnol 9, 24.

    Article  Google Scholar 

  29. Sun, Y., Booker, C. F., Kumari, S., Day, R. N., Davidson, M., and Periasamy, A. (2009) Characterization of an orange acceptor fluorescent protein for sensitized spectral fluorescence resonance energy transfer microscopy using a white-light laser. J Biomed Opt 14, 054009.

    Article  Google Scholar 

Download references

Acknowledgments

The authors were supported by the following grants: EU FP6 LSHBCT-2004-503467, LSHC-CT-2005-018914, MRTN-CT-2005-019481, and MCRTB-CT-035946; Hungarian National Research Fund K62648, K75752, K68763, K72677; Hungarian National Development Agency TAMOP-4.2.2-08/1-2008-0019 and TAMOP-4.2.11B-09/11KONV-2010-0007; and Hungarian Ministry of Health ETT 362/2009.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György Vereb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Vereb, G., Nagy, P., Szöllo˝si, J. (2011). Flow Cytometric FRET Analysis of Protein Interaction. In: Hawley, T., Hawley, R. (eds) Flow Cytometry Protocols. Methods in Molecular Biology, vol 699. Humana Press. https://doi.org/10.1007/978-1-61737-950-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-61737-950-5_18

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61737-949-9

  • Online ISBN: 978-1-61737-950-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics