Skip to main content

Laser Capture Microdissection: ArcturusXT Infrared Capture and UV Cutting Methods

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 823))

Abstract

Laser capture microdissection (LCM) is a technique that allows the precise procurement of enriched cell populations from a heterogeneous tissue under direct microscopic visualization. LCM can be used to harvest the cells of interest directly or can be used to isolate specific cells by ablating the unwanted cells, resulting in histologically enriched cell populations. The fundamental components of laser microdissection technology are (a) visualization of the cells of interest via microscopy, (b) transfer of laser energy to a thermolabile polymer with either the formation of a polymer–cell composite (capture method) or transfer of laser energy via an ultraviolet laser to photovolatize a region of tissue (cutting method), and (c) removal of cells of interest from the heterogeneous tissue section. Laser energy supplied by LCM instruments can be infrared (810 nm) or ultraviolet (355 nm). Infrared lasers melt thermolabile polymers for cell capture, whereas ultraviolet lasers ablate cells for either removal of unwanted cells or excision of a defined area of cells. LCM technology is applicable to an array of applications including mass spectrometry, DNA genotyping and loss-of-heterozygosity analysis, RNA transcript profiling, cDNA library generation, proteomics discovery, and signal kinase pathway profiling. This chapter describes the unique features of the ArcturusXT laser capture microdissection instrument, which incorporates both infrared capture and ultraviolet cutting technology in one instrument, using a proteomic downstream assay as a model.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Wulfkuhle, J. D., Speer, R., Pierobon, M., Laird, J., Espina, V., Deng, J. et al. (2008) Multiplexed cell signaling analysis of human breast cancer applications for personalized therapy. J Proteome Res 7, 150817.

    Google Scholar 

  2. Petricoin, E. F., 3rd, Espina, V., Araujo, R. P., Midura, B., Yeung, C., Wan, X. et al. (2007) Phosphoprotein pathway mapping: Akt/mammalian target of rapamycin activation is negatively associated with childhood rhabdomyosarcoma survival. Cancer Res 67, 343140.

    Google Scholar 

  3. Petricoin, E. F., 3rd, Bichsel, V. E., Calvert, V. S., Espina, V., Winters, M., Young, L. et al. (2005) Mapping molecular networks using proteomics: a vision for patient-tailored combination therapy. J Clin Oncol 23, 361421.

    Google Scholar 

  4. Wulfkuhle, J. D., Sgroi, D. C., Krutzsch, H., McLean, K., McGarvey, K., Knowlton, M. et al. (2002) Proteomics of human breast ductal carcinoma in situ. Cancer Res 62, 67409.

    Google Scholar 

  5. Nakazono, M., Qiu, F., Borsuk, L. A., Schnable, P. S. (2003) Laser-capture microdissection, a tool for the global analysis of gene expression in specific plant cell types: identification of genes expressed differentially in epidermal cells or vascular tissues of maize. Plant Cell 15, 58396.

    Google Scholar 

  6. Ma, X. J., Dahiya, S., Richardson, E. A., Erlander, M., Sgroi, D. C. (2009) Gene expression profiling of tumor microenvironment during breast cancer progression. Breast Cancer Res 11, R7.

    Google Scholar 

  7. Emmert-Buck, M. R., Bonner, R. F., Smith, P. D., Chuaqui, R. F., Zhuang, Z., Goldstein, S. R. et al. (1996) Laser capture microdissection. Science 274, 9981001.

    Google Scholar 

  8. Bonner, R. F., Emmert-Buck, M., Cole, K., Pohida, T., Chuaqui, R., Goldstein, S. et al. (1997) Laser capture microdissection: molecular analysis of tissue. Science 278, 1481,1483.

    Google Scholar 

  9. Angeles, G., Berrio-Sierra, J., Joseleau, J. P., Lorimier, P., Lefebvre, A., Ruel, K. (2006) Preparative laser capture microdissection and single-pot cell wall material preparation: a novel method for tissue-specific analysis. Planta 224, 22832.

    Google Scholar 

  10. Gallup, J. M., Kawashima, K., Lucero, G., Ackermann, M. R. (2005) New quick method for isolating RNA from laser captured cells stained by immunofluorescent immunohistochemistry; RNA suitable for direct use in fluorogenic TaqMan one-step real-time RT-PCR. Biol Proced Online 7, 7092.

    Google Scholar 

  11. Mouledous, L., Hunt, S., Harcourt, R., Harry, J., Williams, K. L., Gutstein, H. B. (2003) Navigated laser capture microdissection as an alternative to direct histological staining for proteomic analysis of brain samples. Proteomics 3, 6105.

    Google Scholar 

  12. Nakamura, N., Ruebel, K., Jin, L., Qian, X., Zhang, H., Lloyd, R. V. (2007) Laser capture microdissection for analysis of single cells. Methods Mol Med 132, 118.

    Google Scholar 

  13. VanMeter, A. J., Rodriguez, A. S., Bowman, E. D., Jen, J., Harris, C. C., Deng, J. et al. (2008) Laser capture microdissection and protein microarray analysis of human non-small cell lung cancer: differential epidermal growth factor receptor (EGPR) phosphorylation events associated with mutated EGFR compared with wild type. Mol Cell Proteomics 7, 190224.

    Google Scholar 

  14. Wong, M. H., Saam, J. R., Stappenbeck, T. S., Rexer, C. H., Gordon, J. I. (2000) Genetic mosaic analysis based on Cre recombinase and navigated laser capture microdissection. Proc Natl Acad Sci U S A 97, 126016.

    Google Scholar 

  15. Kennedy, J., Katsuta, H., Jung, M. H., Marselli, L., Goldfine, A. B., Balis, U. J. et al. (2010) Protective unfolded protein response in human pancreatic beta cells transplanted into mice. PLoS One 5, e11211.

    Google Scholar 

  16. Cha, S., Imielinski, M. B., Rejtar, T., Richardson, E. A., Thakur, D., Sgroi, D. C. et al. (2010) In situ proteomic analysis of human breast cancer epithelial cells using laser capture microdissection: annotation by protein set enrichment analysis and gene ontology. Mol Cell Proteomics 9, 252944.

    Google Scholar 

  17. Kolble, K. (2000) The LEICA microdissection system: design and applications. J Mol Med 78, B24-5.

    Google Scholar 

  18. Micke, P., Ostman, A., Lundeberg, J., Ponten, F. (2005) Laser-assisted cell microdissection using the PALM system. Methods Mol Biol 293, 15166.

    Google Scholar 

  19. Schutze, K., Posl, H., Lahr, G. (1998) Laser micromanipulation systems as universal tools in cellular and molecular biology and in medicine. Cell Mol Biol (Noisy-le-grand) 44, 73546.

    Google Scholar 

  20. Schermelleh, L., Thalhammer, S., Heckl, W., Posl, H., Cremer, T., Schutze, K. et al. (1999) Laser microdissection and laser pressure catapulting for the generation of chromosome-specific paint probes. Biotechniques 27, 3627.

    Google Scholar 

  21. Espina, V., Edmiston, K. H., Heiby, M., Pierobon, M., Sciro, M., Merritt, B. et al. (2008) A portrait of tissue phosphoprotein stability in the clinical tissue procurement process. Mol Cell Proteomics 7, 19982018.

    Google Scholar 

  22. Botling, J., Edlund, K., Segersten, U., Tahmasebpoor, S., Engstrom, M., Sundstrom, M. et al. (2009) Impact of Thawing on RNA Integrity and Gene Expression Analysis in Fresh Frozen Tissue. Diagn Mol Pathol

    Google Scholar 

  23. Micke, P., Ohshima, M., Tahmasebpoor, S., Ren, Z. P., Ostman, A., Ponten, F. et al. (2006) Biobanking of fresh frozen tissue: RNA is stable in nonfixed surgical specimens. Lab Invest 86, 20211.

    Google Scholar 

  24. Xiang, C. C., Mezey, E., Chen, M., Key, S., Ma, L., Brownstein, M. J. (2004) Using DSP, a reversible cross-linker, to fix tissue sections for immunostaining, microdissection and expression profiling. Nucleic Acids Res 32, e185.

    Google Scholar 

  25. Espina, V., Wulfkuhle, J. D., Calvert, V. S., VanMeter, A., Zhou, W., Coukos, G. et al. (2006) Laser-capture microdissection. Nat Protoc 1, 586603.

    Google Scholar 

  26. ArcturusXT user guide: Flexible and Modular Laser Capture Microdissection, Rev. A. Molecular Devices Corporation, Sunnyvale, CA, 2007.

    Google Scholar 

  27. Iyer, E. P., Cox, D. N. (2010) Laser capture microdissection of Drosophila peripheral neurons. J Vis Exp 39, e2016, doi: 10.3791/2016.

    Google Scholar 

  28. Kiernan, J. (2008) Histological staining in one or two colours, in Histological and Histochemical Methods (ed.), Scion, Oxfordshire, pp. 146–147.

    Google Scholar 

  29. Buckanovich, R. J., Sasaroli, D., O’Brien-Jenkins, A., Botbyl, J., Conejo-Garcia, J. R., Benencia, F. et al. (2006) Use of immuno-LCM to identify the in situ expression profile of cellular constituents of the tumor microenvironment. Cancer Biol Ther 5, 63542.

    Google Scholar 

  30. Agar, N. S., Halliday, G. M., Barnetson, R. S., Jones, A. M. (2003) A novel technique for the examination of skin biopsies by laser capture microdissection. J Cutan Pathol 30, 26570.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa I. Gallagher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gallagher, R.I., Blakely, S.R., Liotta, L.A., Espina, V. (2012). Laser Capture Microdissection: ArcturusXT Infrared Capture and UV Cutting Methods. In: Espina, V., Liotta, L. (eds) Molecular Profiling. Methods in Molecular Biology, vol 823. Humana Press. https://doi.org/10.1007/978-1-60327-216-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-216-2_11

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-215-5

  • Online ISBN: 978-1-60327-216-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics