Skip to main content

Immobilization of Enzymes

A Literature Survey

  • Protocol
Immobilization of Enzymes and Cells

Part of the book series: Methods in Biotechnology™ ((MIBT,volume 22))

Abstract

The term “immobilized enzymes” refers to “enzymes physically confined or localized in a certain defined region of space with retention of their catalytic activities, and which can be used repeatedly and continuously”;. Besides the application in industrial processes, the immobilization techniques are the basis for making a number of biotechnological products with applications in diagnostics, bioaffinity chromatography, and biosensors. Initially, only immobilized single enzymes were used, but the 1970s saw the development of more complex systems—including two-enzyme reactions with co-factor regeneration and living cells. The major components of an immobilized enzyme system are the enzyme, the matrix, and the mode of attachment. The enzymes can be attached to the support by interactions ranging from reversible physical adsorption and ionic linkages to stable covalent bonds. The covalent reactions commonly employed give rise to binding through amide, ether, thio-ether, or carbamate bonds. As a consequence of enzyme immobilization, some properties such as catalytic activity or thermal stability become altered. These effects have been demonstrated and exploited. The concept of stabilization has been an important driving force for immobilizing enzymes. True stabilization at the molecular level has been demonstrated (e.g., proteins immobilized through multipoint covalent binding).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stryer L. (1995) Biochemistry, Freeman, New York.

    Google Scholar 

  2. Creighton T. E. (1984) Proteins, Freeman, Oxford, UK.

    Google Scholar 

  3. Katchalski-Katzir E. (1993) Immobilized enzymes: Learning from past successes and failures. Trends Biotechnol. 11, 471–478

    Article  CAS  Google Scholar 

  4. Tosa T., Mori T. Fuse N., and Chibata I. (1966) Studies on continuous enzyme reactions. I. Screening of carriers for preparation of water-insoluble aminoacylase. Enzymologia. 31, 214–224.

    CAS  Google Scholar 

  5. Tanaka A., Tosa T., and Kobayashi T. (1993) Industrial Application of Immobilized Biocatalysts, Marcel Dekker, New York, NY.

    Google Scholar 

  6. Swaisgood H. E. (1985) Immobilization of enzymes and some applications in the food industry. In: Enzymes and Immobilized Cells in Biotechnology (Laskin A. I., ed.), Benjamin Cummings, London, 1–24.

    Google Scholar 

  7. Guibault G. G., Kauffmann J. M., and Patriarche G. J. (1991) Immobilized Enzyme Electrodes as Biosensors. In: Protein Immobilization. Fundamentals and Applications (Taylor R. F., ed.), Marcel Dekker, New York, NT, 209–262.

    Google Scholar 

  8. Taylor R.F. (1991) Immobilized Antibody and Receptor Based Biosensors. In: Protein Immobilization. Fundamentals and Applications (Taylor R. F., ed.), Marcel Dekker, New York, NY, 263–303.

    Google Scholar 

  9. Chang M. S. (1991) Therapeutic Applications of Immobilized Proteins and Cells. In: Protein Immobilization. Fundamentals and Applications (Taylor R. F., ed.), Marcel Dekker, New York, NY, 305–318.

    Google Scholar 

  10. Bickerstaff G. F. (1995) Impact of genetic technology on enzyme technology. Genet. Engineer Biotechnologist 15, 13–30.

    Google Scholar 

  11. Hartmeier W. (1988) Immobilized Biocatalysts, Springer-Verlag, Berlin.

    Google Scholar 

  12. Trevan M. (1980) Techniques of Immobilization. In: Immobilized Enzymes. An Introduction and Applications in Biotechnology (Trevan M., ed.), Wiley, Chichester-New York, 1–9.

    Google Scholar 

  13. Brodelius P. and Mosbach K. (1987) Immobilization Techniques for Cells/Organelles. In: Methods in Enzymology, volume 135, (Mosbach K., ed.), Academic Press, London, 173–454.

    Google Scholar 

  14. Buchholz K. and Klein J. (1987) Characterization of Immobilized Biocatalysts. In: Methods in Enzymology volume 135, (Mosbach K., ed.), Academic Press, London, 3–30.

    Google Scholar 

  15. Cabral J.M.S. and Kennedy J. F (1991) Covalent and coordination immobilization of proteins. In: Protein immobilization. Fundamentals and Applications (Taylor R. F., ed.), Marcel Dekker, New York, NY, 73–138.

    Google Scholar 

  16. Gemeiner P. (1992) Materials for enzyme engineering. In: Enzyme Engineering (Gemeiner P., ed.), Ellis Horwood, New York, NY, 13–119.

    Google Scholar 

  17. Gupta M. and Mattiasson B. (1992) Unique applications of immobilized proteins in bioanalytical systems. In: Methods of Biochemical Analysis, volume 36, (Suelter C.H., ed.), Wiley, New York, NY, 1–34.

    Google Scholar 

  18. Mattiasson B. and Kaul R. (1991) Determination of coupling yields and handling of labile proteins in immobilization technology. In: Protein immobilization. Fundamentals and Applications (Taylor R. F., ed.), Marcel Dekker, New York, NY, 161–179.

    Google Scholar 

  19. Scouten W. H. (1987) A Survey of Enzyme Coupling Techniques. In: Methods in Enzymology, volume 135, (Mosbach K., ed.), Academic Press, London, 30–65.

    Google Scholar 

  20. White C. A. and Kennedy J. F. (1980) Popular matrices for enzyme and other immobilizations. Enzyme Microb. Technol. 2, 82–90.

    Article  CAS  Google Scholar 

  21. Taylor R. F. (1991) Commercially available supports for protein immobilization. In: Protein immobilization. Fundamentals and Applications (Taylor R. F., ed.), Marcel Dekker, New York, NY, 139–160.

    Google Scholar 

  22. Lawson T. G., Regnier F. E., and Wieth H. L. (1983) Separation of synthetic oligo-nucleotides on columns of microparticulate silica coated with crosslinked polyethylene-imine. Anal. Biochem. 133, 85–93.

    Article  CAS  Google Scholar 

  23. Axén R., Porath J. and Ernback S. (1967) Chemical coupling of peptides and proteins to polysaccharides by means of cyanogen halides. Nature 214, 1302–1304.

    Article  Google Scholar 

  24. Porath J. and Axén R. (1976) Immobilization of enzymes to agar, agarose, and Sephadex supports. In: Methods in Enzymology, volume XLIV, (Mosbach K., ed.), Academic Press, New York, NY, 19–45.

    Google Scholar 

  25. Guisán J. M. (1988) Agarose-aldehyde gels as supports for immobilization-stabilization of enzymes. Enzyme Microb. Technol. 10, 375–382.

    Article  Google Scholar 

  26. Wilchek M. and Miron T. (1982) A spectrophotometric assay for soluble and immobilized N-hydroxysuccinimide esters. Anal. Biochem. 126, 433–435.

    Article  Google Scholar 

  27. Drobníck J., Labský W., Kudlvasrová H., Saudek V., and Svec F. (1982) The activation of hydroxy groups of carriers with 4-nitrophenyl and N-hydroxysuccinimidyl chloroformates. Biotechnol. Bioeng. 24, 487–493.

    Article  Google Scholar 

  28. Parikh I., March S., and Cuatrecasas P. (1974) Topics in the methodology of substitution reactions with agarose. In: Methods in Enzymology, volume XXXIV (Jacoby W.B. and Wilchek M. eds.), Academic Press, New York, NY, 77–102.

    Google Scholar 

  29. Inman J. K. and Dintzis H. M. (1969) The derivatization of cross-linked polyacrylamide beads. Controlled introduction of functional groups for the preparation of special-purpose, biochemical adsorbents. Biochemistry 8, 4074–4082.

    Article  CAS  Google Scholar 

  30. Rozprimova L., Franek F. and Kubanek V. (1978) Utilization of powder polyester in making insoluble antigens and pure antibodies. Cesk. Epidemiol. Mikrobiol. Immunol. 27, 335–341.

    CAS  Google Scholar 

  31. Ngo T. T., Laidler K. J., and Yam C. F. (1979) Kinetics of acetylcholinesterase immobilized on polyethylene tubing. Can. J. Biochemistry 57, 1200–1203.

    Article  CAS  Google Scholar 

  32. Grubhofer N. and Schleith L. (1954). Protein coupling with diazotized polyaminostyrene. Hoppe Seylers Z Physiol. Chem. 297, 108–112.

    Article  CAS  Google Scholar 

  33. Beitz J., Schellemberger A., Lasch J., and Fischer J. (1980) Catalytic properties and electrostatic potential of charged immobilized enzyme derivatives. Pyruvate decarboxylase attached to cationic polystyrene beads of different charge densities. Biochim. Biophys Acta 612, 451–454.

    CAS  Google Scholar 

  34. Hornby W. E. and Goldstein L. (1976) Immobilization of enzymes on nylon. In: Methods in Enzymology, volume XXXIV, (Jacoby W.B. and Wilchek M., eds.), Academic Press, New York, NY, 118–134.

    Google Scholar 

  35. O’Driscoll K. F. (1976) Techniques of enzyme entrapment in gels. In: Methods in Enzymology, volume XLIV, (Mosbach K., ed.), Academic Press, New York, NY, 169–183.

    Google Scholar 

  36. Bernfeld P. and Wan J. (1963) Antigens and enzymes made insoluble by entrapping them into lattices of synthetic polymers. Science 142, 678–679.

    Article  CAS  Google Scholar 

  37. Dinelli D., Marconi W., and Morisi F. (1976) Fiber-entrapped enzymes. In: Methods in Enzymology, volume XLIV, (Mosbach K., ed.), Academic Press, New York, NY, 227–243.

    Google Scholar 

  38. Wadiack D. T. and Carbonell R. G. (1975) Kinetic behavior of microencapsulated β-galactosidase. Biotechnol. Bioeng. 17, 1157–1181.

    Article  Google Scholar 

  39. Messing R. A. (1976) Adsorption and inorganic bridge formations. In: Methods in Enzymology, volume XLIV, (Mosbach K., ed.), Academic Press, New York, NY, 148–169.

    Google Scholar 

  40. Woodward J. (1985) Immobilized enzymes: adsorption and covalent coupling. In: Immobilized Cells and Enzymes: A Practical Approach, (Woodward J., ed.), IRL, Oxford, UK, 3–17.

    Google Scholar 

  41. Tosa T., Mori T., Fuse N., and Chibata I. (1967) Studies on continuous enzyme reactions I. Screening of carriers for preparation of water insoluble aminoacylase. Enzymologia 31, 214–224.

    Google Scholar 

  42. Sharp A.K., Kay G., and Lilly M. D. (1969) The kinetics of β-galactosidase attached to porous cellulose sheets. Biotechnol. Bioeng., 11, 363–380.

    Article  CAS  Google Scholar 

  43. Bahulekar R., Ayangar N. R., and Ponrathnam S. (1991) Polyethyleneimine in immobilization of biocatalysts. Enzyme. Microb. Technol, 13, 858–868.

    Article  CAS  Google Scholar 

  44. Goldstein L. (1972) Microenvironmental effects on enzyme catalysis. A kinetic study of polyanionic and polycationic derivatives of chymotrypsin. Biochemistry 11, 4072–4084.

    Article  CAS  Google Scholar 

  45. Goldman R., Kedem O., Silman I., Caplan S., and Katchalski-Katzir E. (1968) Papain-collodion membranes. I. Preparation and properties. Biochemistry 7, 486–500.

    Article  CAS  Google Scholar 

  46. Guisan J.M., Alvaro G., Rosell C.M., and Fernandez-Lafuente R. (1994) Industrial design of enzymic processes catalysed by very active immobilized de-rivatives: utilization of diffusional limitations (gradients of pH) as a profitable tool in enzyme engineering. Biotechnol.Appl. Biochem. 20, 357–369.

    CAS  Google Scholar 

  47. Porath J. (1987) Salting-out adsorption techniques for protein purification Biopolymers 26, S193–204.

    Article  Google Scholar 

  48. Caldwell K., Axen R., Bergwall M., and Porath J.(1976) Immobilization of enzymes based on hydrophobic interaction. I. Preparation and properties of a betaamylase adsorbate. Biotechnol. Bioeng. 18, 1573–1588.

    Article  CAS  Google Scholar 

  49. Caldwell K., Axén R., Bergwall M., and Porath J.(1976) Immobilization of enzymes based on hydrophobic interaction. II. Preparation and properties of an amyloglucosidase adsorbate. Biotechnol. Bioeng. 18, 1589–1604.

    Article  CAS  Google Scholar 

  50. Cashion P., Lentini V., Harrison D., and Javed, A. (1982) Enzyme immobilization on trityl-agarose: Reusability of both matrix and enzyme. Bioechnol. Bioeng. 24, 1221–1224.

    Article  CAS  Google Scholar 

  51. Yon R. (1974) Enzyme purification by hydrophobic chromatography: an alternative approach illustrated in the purification of aspartate transcarbamoylase from wheat germ. Biochem. J. 137, 127–130.

    CAS  Google Scholar 

  52. Dixon J., Andrews P., and Butler L. (1979) Hydrophobic esters of cellulose: properties and applications in biochemical technology. Biotechnol. Bioeng. 21, 2113–2123.

    Article  CAS  Google Scholar 

  53. Solomon B., Hollaander Z., Koppel R., and Katchalski-Kazir E. (1987) Use of monoclonal antibodies for the preparation of highly active immobilized enzymes. In: Methods in Enzymology, volume 135, (Mosbach K., ed.), Academic Press, London, 160–170.

    Google Scholar 

  54. Cabral J. M. S., Novais J. M., and Kennedy J. F. (1986) Immobilization studies of whole microbial cells on transition metal activated inorganic supports. Appl. Microbiol. Biotechnol. 23, 157–162.

    Article  CAS  Google Scholar 

  55. Kennedy J.F. and Cabral J.M.S. (1985) Immobilization of biocatalysts by metallink/ chelation processes. In: Immobilized Cells and Enzymes, (Woodward J., ed.), IRL, Oxford, UK, 19–37.

    Google Scholar 

  56. Porath J. (1992) Immobilized metal ion affinity chromatography. Protein Expr. Purif. 3, 263–281.

    Article  CAS  Google Scholar 

  57. Kagedal L. (1998) Immobilized Metal Ion Affinity Chromatography. In: Protein Purification (Janson J. C. and Rydén L., eds.), Wiley-VCH, New York, NY, 311–342.

    Google Scholar 

  58. Brena B., Ryden L., and Porath J. (1994). Immobilization of β-galactosidase on metal-chelated-substituted gels. Biotechnol. Appl. Biochem. 19, 217–231.

    CAS  Google Scholar 

  59. Carlsson J., Batista-Viera F., and Rydén L. (1998) Covalent Chromatography. In: Protein purification: principles, high-resolution methods, and applications, (Janson J. C. and Rydén L., eds.), Wiley-VCH, New York, NY, 343–373.

    Google Scholar 

  60. Trevan M. (1980) Effect of Immobilization on Enzyme Activity. In: Immobilized Enzymes. An Introduction and Applications in Biotechnology (Trevan M. ed.), Wiley, Chichester-New York, 11–56.

    Google Scholar 

  61. Blanco R. M., Calvete J. J., and Guisan J. M. (1989) Immobilization-stabilization of enzymes. Variables that control the intensity of the trypsin (amine)-agarose-( aldehyde)-multipoint attachment. Enzyme Microb. Technol. 11, 353–359.

    Article  CAS  Google Scholar 

  62. Koch-Schmidt A. and Mosbach K. (1977) Studies on conformation of soluble and immobilized enzymes using differential scanning calorimetry. 1. Thermal sta-bility of nicotinamide adenine dinucleotide dependent dehydrogenases. Biochemistry 16, 2101–2105.

    Article  CAS  Google Scholar 

  63. Koch-Schmidt A. and Mosbach K. (1977). Studies on conformation of soluble and immobilized enzymes using differential scanning calorimetry. 2. Specific activity and thermal stability of enzymes bound weakly and strongly to Sepharose CL 4B. Biochemistry 16, 2105–2109.

    Article  CAS  Google Scholar 

  64. Gabel D., Steinberg I., and Katchalski-Kazir E. (1971) Changes in conformation of insolubilized trypsin and chymotrypsin, followed by fluorescence. Biochemistry 10, 4661–4669.

    Article  CAS  Google Scholar 

  65. Boundy J., Smiley K.L., Swanson C.L., and Hofreiter B.T. (1976) Exoenzymic activity of alpha-amylase immobilized on a phenol-formaldehyde resin Carbohydr. Res. 48, 239–244.

    Article  CAS  Google Scholar 

  66. Guisán J. M., Penzol G., Armisen P., et al. (1997) Immobilization of enzymes acting on macromolecular substrates. In: Immobilization of Enzymes and Cells, (Bickerstaff G. F., ed.), Humana Press, Totowa, NJ, 261–275.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Humana Press Inc.

About this protocol

Cite this protocol

Brena, B.M., Batista-Viera, F. (2006). Immobilization of Enzymes. In: Guisan, J.M. (eds) Immobilization of Enzymes and Cells. Methods in Biotechnology™, vol 22. Humana Press. https://doi.org/10.1007/978-1-59745-053-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-053-9_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-290-2

  • Online ISBN: 978-1-59745-053-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics