Skip to main content

Computational Tools for Allosteric Drug Discovery: Site Identification and Focus Library Design

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1529))

Abstract

Allostery is an intrinsic phenomenon of biological macromolecules involving regulation and/or signal transduction induced by a ligand binding to an allosteric site distinct from a molecule’s active site. Allosteric drugs are currently receiving increased attention in drug discovery because drugs that target allosteric sites can provide important advantages over the corresponding orthosteric drugs including specific subtype selectivity within receptor families. Consequently, targeting allosteric sites, instead of orthosteric sites, can reduce drug-related side effects and toxicity. On the down side, allosteric drug discovery can be more challenging than traditional orthosteric drug discovery due to difficulties associated with determining the locations of allosteric sites and designing drugs based on these sites and the need for the allosteric effects to propagate through the structure, reach the ligand binding site and elicit a conformational change. In this study, we present computational tools ranging from the identification of potential allosteric sites to the design of “allosteric-like” modulator libraries. These tools may be particularly useful for allosteric drug discovery.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Changeux JP (2013) The concept of allosteric modulation: an overview. Drug Discov Today Technol 10:e223–e228

    Article  PubMed  Google Scholar 

  2. Eisenberg D, Marcotte EM, Xenarios I, Yeates TO (2000) Protein function in the post-genomic era. Nature 405:823–826

    Article  CAS  PubMed  Google Scholar 

  3. Kar G, Keskin O, Gursoy A, Nussinov R (2010) Allostery and population shift in drug discovery. Curr Opin Pharmacol 10:715–722

    Article  CAS  PubMed  Google Scholar 

  4. Boehr DD, Nussinov R, Wright PE (2009) The role of dynamic conformational ensembles in biomolecular recognition. Nat Chem Biol 5:789–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Motlagh HN, Wrabl JO, Li J, Hilser VJ (2014) The ensemble nature of allostery. Nature 508:331–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Csermely P, Palotai R, Nussinov R (2010) Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends Biochem Sci 35:539–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sinha N, Nussinov R (2001) Point mutations and sequence variability in proteins: redistributions of preexisting populations. Proc Natl Acad Sci U S A 98:3139–3144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Goodey NM, Benkovic SJ (2008) Allosteric regulation and catalysis emerge via a common route. Nat Chem Biol 4:474–482

    Article  CAS  PubMed  Google Scholar 

  9. Nussinov R, Tsai CJ (2013) Allostery in disease and in drug discovery. Cell 153:293–305

    Article  CAS  PubMed  Google Scholar 

  10. Nussinov R, Tsai CJ (2014) Unraveling structural mechanisms of allosteric drug action. Trends Pharmacol Sci 35:256–264

    Article  CAS  PubMed  Google Scholar 

  11. Christopoulos A (2002) Allosteric binding sites on cell-surface receptors: novel targets for drug discovery. Nat Rev Drug Discov 1:198–210

    Article  CAS  PubMed  Google Scholar 

  12. Szilágyi A, Nussinov R, Csermely P (2013) Allo-network drugs: extension of the allosteric drug concept to protein- protein interaction and signaling networks. Curr Top Med Chem 13:64–77

    Article  PubMed  Google Scholar 

  13. Cowan-Jacob SW, Jahnke W, Knapp S (2014) Novel approaches for targeting kinases: allosteric inhibition, allosteric activation and pseudokinases. Future Med Chem 6:541–561

    Article  CAS  PubMed  Google Scholar 

  14. Nussinov R, Tsai C-J (2014) The design of covalent allosteric drugs. Annu Rev Pharmacol Toxicol 55:249–267

    Article  PubMed  Google Scholar 

  15. Yang J-S, Seo SW, Jang S et al (2012) Rational engineering of enzyme allosteric regulation through sequence evolution analysis. PLoS Comput Biol 8, e1002612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ma B, Elkayam T, Wolfson H, Nussinov R (2003) Protein-protein interactions: structurally conserved residues distinguish between binding sites and exposed protein surfaces. Proc Natl Acad Sci U S A 100:5772–5777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fang Z, Grütter C, Rauh D (2013) Strategies for the selective regulation of kinases with allosteric modulators: exploiting exclusive structural features. ACS Chem Biol 8:58–70

    Article  CAS  PubMed  Google Scholar 

  18. Kenakin T, Miller LJ (2010) Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 62:265–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Nussinov R, Tsai C (2012) The different ways through which specificity works in orthosteric and allosteric drugs. Curr Pharm Des 18:1311–1316

    Article  CAS  PubMed  Google Scholar 

  20. Zhang J, Adrián FJ, Jahnke W et al (2010) Targeting Bcr-Abl by combining allosteric with ATP-binding-site inhibitors. Nature 463:501–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Müller CE, Schiedel AC, Baqi Y (2012) Allosteric modulators of rhodopsin-like G protein-coupled receptors: opportunities in drug development. Pharmacol Ther 135:292–315

    Article  PubMed  Google Scholar 

  22. Lu S, Li S, Zhang J (2014) Harnessing allostery: a novel approach to drug discovery. Med Res Rev 34:1242–1285

    Article  CAS  PubMed  Google Scholar 

  23. Lu S, Huang W, Zhang J (2014) Recent computational advances in the identification of allosteric sites in proteins. Drug Discov Today 19:1595–1600

    Article  CAS  PubMed  Google Scholar 

  24. Li X, Chen Y, Lu S et al (2013) Toward an understanding of the sequence and structural basis of allosteric proteins. J Mol Graph Model 40:30–39

    Article  PubMed  Google Scholar 

  25. Wang Q, Zheng M, Huang Z et al (2012) Toward understanding the molecular basis for chemical allosteric modulator design. J Mol Graph Model 38:324–333

    Article  CAS  PubMed  Google Scholar 

  26. Huang W, Lu S, Huang Z et al (2013) Allosite: a method for predicting allosteric sites. Bioinformatics 29:2357–2359

    Article  CAS  PubMed  Google Scholar 

  27. Huang Z, Zhu L, Cao Y et al (2011) ASD: a comprehensive database of allosteric proteins and modulators. Nucleic Acids Res 39:D663–D669

    Article  CAS  PubMed  Google Scholar 

  28. Huang Z, Mou L, Shen Q et al (2014) ASD v2. 0: updated content and novel features focusing on allosteric regulation. Nucleic Acids Res 42:D510–D516

    Article  CAS  PubMed  Google Scholar 

  29. Le Guilloux V, Schmidtke P, Tuffery P (2009) Fpocket: an open source platform for ligand pocket detection. BMC Bioinformatics 10:168

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chang C-C, Lin C-J (2011) LIBSVM: a library for support vector machines. ACM Trans Intell Syst Technol 2:27

    Article  Google Scholar 

  31. Bowman GR, Geissler PL (2012) Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites. Proc Natl Acad Sci U S A 109:11681–11686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jacobs DJ, Livesay DR, Mottonen JM et al (2012) Ensemble properties of network rigidity reveal allosteric mechanisms. Methods Mol Biol 796:279–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Villoutreix BO, Kuenemann MA, Poyet J-L et al (2014) Drug-like protein-protein interaction modulators: challenges and opportunities for drug discovery and chemical biology. Mol Inform 33:414–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This project has been funded in whole or in part with Federal funds from the Frederick National Laboratory for Cancer Research, National Institutes of Health, under contract HHSN261200800001E. This research was supported [in part] by the Intramural Research Program of NIH, Frederick National Lab, Center for Cancer Research. The content of this publication does not necessarily reflect the views or policies of the Department of Health and Human Services, nor does mention of trade names, commercial products, or organizations imply endorsement by the US Government. This research was supported in part by Natural Science Foundation of China (81322046, 81302698, 81473137) and Shanghai Rising-Star Program (13QA1402300).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruth Nussinov or Jian Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Huang, W., Nussinov, R., Zhang, J. (2017). Computational Tools for Allosteric Drug Discovery: Site Identification and Focus Library Design. In: Samish, I. (eds) Computational Protein Design. Methods in Molecular Biology, vol 1529. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6637-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6637-0_23

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6635-6

  • Online ISBN: 978-1-4939-6637-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics