Skip to main content

High-Throughput Analysis of the Plasma N-Glycome by UHPLC

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1503))

Abstract

The understanding of glycosylation alterations in health and disease has evolved significantly and glycans are considered to be relevant biomarker candidates. High-throughput analytical technologies capable of generating high-quality, large-scale glycoprofiling data are in high demand. Here, we describe an automated sample preparation workflow and analysis of N-linked glycans from plasma samples using hydrophilic interaction liquid chromatography with fluorescence detection on an ultrahigh-performance liquid chromatography (UHPLC) instrument. Samples are prepared in 96-well plates and the workflow features rapid glycoprotein denaturation, enzymatic glycan release, glycan purification on solid-supported hydrazide, fluorescent labeling, and post-labeling cleanup with solid-phase extraction. The development of a novel approach for plasma N-glycan analysis and its implementation on a robotic platform significantly reduces the time required for sample preparation and minimizes technical variation. It is anticipated that the developed method will contribute to expanding high-throughput capabilities to analyze protein glycosylation.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Merry AH, Merry CL (2005) Glycoscience finally comes of age. EMBO Rep 6(10):900–903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Varki A (1993) Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3(2):97–130

    Article  CAS  PubMed  Google Scholar 

  3. Lowe JB (2001) Glycosylation, immunity, and autoimmunity. Cell 104(6):809–812

    Article  CAS  PubMed  Google Scholar 

  4. Lauc G et al (2016) Mechanisms of disease: the human N-glycome. Biochim Biophys Acta 1860:1574–1582

    Article  CAS  PubMed  Google Scholar 

  5. Fuster MM, Esko JD (2005) The sweet and sour of cancer: glycans as novel therapeutic targets. Nat Rev Cancer 5(7):526–542

    Article  CAS  PubMed  Google Scholar 

  6. Freeze HH, Aebi M (2005) Altered glycan structures: the molecular basis of congenital disorders of glycosylation. Curr Opin Struct Biol 15(5):490–498

    Article  CAS  PubMed  Google Scholar 

  7. Szabo Z et al (2010) Improved sample preparation method for glycan analysis of glycoproteins by CE‐LIF and CE‐MS. Electrophoresis 31(8):1389–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Royle L et al (2008) HPLC-based analysis of serum N-glycans on a 96-well plate platform with dedicated database software. Anal Biochem 376(1):1–12

    Article  CAS  PubMed  Google Scholar 

  9. Ahn J et al (2010) Separation of 2-aminobenzamide labeled glycans using hydrophilic interaction chromatography columns packed with 1.7 um sorbent. J Chromatogr B 878(34):403–408

    Article  CAS  Google Scholar 

  10. Marino K et al (2010) A systematic approach to protein glycosylation analysis: a path through the maze. Nat Chem Biol 6(10):713–723

    Article  CAS  PubMed  Google Scholar 

  11. North SJ et al (2009) Mass spectrometry in the analysis of N-linked and O-linked glycans. Curr Opin Struct Biol 19(5):498–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Harvey DJ (2005) Proteomic analysis of glycosylation: structural determination of N-and O-linked glycans by mass spectrometry. Expert Rev Proteomics 2(1):87–101

    Article  CAS  PubMed  Google Scholar 

  13. Wuhrer M, Deelder AM, Hokke CH (2005) Protein glycosylation analysis by liquid chromatography–mass spectrometry. J Chromatogr B 825(2):124–133

    Article  CAS  Google Scholar 

  14. Guile GR et al (1996) A rapid high-resolution high-performance liquid chromatographic method for separating glycan mixtures and analyzing oligosaccharide profiles. Anal Biochem 240(2):210–226

    Article  CAS  PubMed  Google Scholar 

  15. Tharmalingam T et al (2013) Strategies for the profiling, characterisation and detailed structural analysis of N-linked oligosaccharides. Glycoconj J 30(2):137–146

    Article  CAS  PubMed  Google Scholar 

  16. Royle L et al (2006) Detailed structural analysis of N-glycans released from glycoproteins in SDS-PAGE gel bands using HPLC combined with exoglycosidase array digestions. In: Brockhausen I (ed) Methods in molecular biology. Humana Press Inc, Totowa, NJ, pp 125–143

    Google Scholar 

  17. Knezevic A et al (2008) Variability, heritability and environmental determinants of human plasma N-glycome. J Proteome Res 8(2):694–701

    Article  Google Scholar 

  18. Arnold JN et al (2011) Novel glycan biomarkers for the detection of lung cancer. J Proteome Res 10(4):1755–1764

    Article  CAS  PubMed  Google Scholar 

  19. Reusch D et al (2013) High-throughput work flow for IgG Fc-glycosylation analysis of biotechnological samples. Anal Biochem 432(2):82–89

    Article  CAS  PubMed  Google Scholar 

  20. Trbojević Akmačić I et al (2015) High-throughput glycomics: optimization of sample preparation. Biochemistry (Mosc) 80(7):934–942

    Article  Google Scholar 

  21. Stöckmann H et al (2013) Automated, high-throughput IgG-antibody glycoprofiling platform. Anal Chem 85(18):8841–8849

    Article  PubMed  Google Scholar 

  22. Shubhakar A et al (2015) High-throughput analysis and automation for glycomics studies. Chromatographia 78(5–6):321–333

    Article  CAS  PubMed  Google Scholar 

  23. Ruhaak LR et al (2008) Hydrophilic interaction chromatography-based high-throughput sample preparation method for N-glycan analysis from total human plasma glycoproteins. Anal Chem 80(15):6119–6126

    Article  CAS  PubMed  Google Scholar 

  24. Stöckmann H et al (2015) Automated, high-throughput serum glycoprofiling platform. Integr Biol 7(9):1026–1032

    Article  Google Scholar 

  25. Campbell MP, Royle L, Rudd PM (2015) GlycoBase and autoGU: resources for interpreting HPLC-Glycan data. Methods Mol Biol 1273:17–28

    Article  CAS  PubMed  Google Scholar 

  26. Adamczyk B et al (2012) Characterization of fibrinogen glycosylation and its importance for serum/plasma N-glycome analysis. J Proteome Res 12(1):444–454

    Article  PubMed  Google Scholar 

  27. Stöckmann H et al (2015) Ultrahigh throughput, ultrafiltration-based N-Glycomics platform for ultraperformance liquid chromatography (ULTRA3). Anal Chem 87(16):8316–8322

    Article  PubMed  Google Scholar 

  28. Harvey DJ et al (2009) Proposal for a standard system for drawing structural diagrams of N- and O-linked carbohydrates and related compounds. Proteomics 9(15):3796–3801

    Article  CAS  PubMed  Google Scholar 

  29. Saldova R et al (2014) Association of N-glycosylation with breast carcinoma and systemic features using high-resolution quantitative UPLC. J Proteome Res 13(5):2314–2327

    Article  CAS  PubMed  Google Scholar 

  30. Bones J et al (2010) Glycomic and glycoproteomic analysis of serum from patients with stomach cancer reveals potential markers arising from host defense response mechanisms. J Proteome Res 10(3):1246–1265

    Article  Google Scholar 

  31. Bones J et al (2010) Ultra performance liquid chromatographic profiling of serum N-glycans for fast and efficient identification of cancer associated alterations in glycosylation. Anal Chem 82(24):10208–10215

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the European Union FP7 GastricGlycoExplorer ITN under grant agreement no. 316929. and HighGlycan under grant agreement no. 278535. We would like to acknowledge Dr. Karol Polom, Dr. Giovanni Corso, and Dr. Franco Roviello from University Hospital of Siena for providing gastric cancer serum samples. The UHPLC instrument was obtained with a grant from the IngaBritt and Arne Lundberg’s Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline M. Rudd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Adamczyk, B., Stöckmann, H., O’Flaherty, R., Karlsson, N.G., Rudd, P.M. (2017). High-Throughput Analysis of the Plasma N-Glycome by UHPLC. In: Lauc, G., Wuhrer, M. (eds) High-Throughput Glycomics and Glycoproteomics. Methods in Molecular Biology, vol 1503. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6493-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6493-2_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6491-8

  • Online ISBN: 978-1-4939-6493-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics