Skip to main content

Clostridium difficile Genome Editing Using pyrE Alleles

  • Protocol
  • First Online:
Clostridium difficile

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1476))

Abstract

Precise manipulation (in-frame deletions and substitutions) of the Clostridium difficile genome is possible through a two-stage process of single-crossover integration and subsequent isolation of double-crossover excision events using replication-defective plasmids that carry a counterselection marker. Use of a codA (cytosine deaminase) or pyrE (orotate phosphoribosyltransferase) as counter selection markers appears equally effective, but there is considerable merit in using a pyrE mutant as the host as, through the use of allele-coupled exchange (ACE) vectors, mutants created (by whatever means) can be rapidly complemented concomitant with restoration of the pyrE allele. This avoids the phenotypic effects frequently observed with high-copy-number plasmids and dispenses with the need to add antibiotic to ensure plasmid retention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cartman ST, Kelly ML, Heeg D, Heap JT, Minton NP (2012) Precise manipulation of the Clostridium difficile chromosome reveals a lack of association between the tcdC genotype and toxin production. Appl Environ Microbiol 78(13):4683–4690. doi:10.1128/AEM.00249-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ehsaan M, Kuit W, Zhang Y, Cartman ST, Heap JT, Winzer K, Minton NP (2016) Mutant generation by allelic exchange and genome resequencing of the biobutanol organism Clostridium acetobutylicum ATCC 824. Biotechnol Biofuels 9:4. doi:10.1186/s13068-015-0410-0

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ng YK, Ehsaan M, Philip S, Collery MM, Janoir C, Collignon A, Cartman ST, Minton NP (2013) Expanding the repertoire of gene tools for precise manipulation of the Clostridium difficile genome: allelic exchange using pyrE alleles. PLoS One 8(2):e56051. doi:10.1371/journal.pone.0056051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Heap JT, Ehsaan M, Cooksley CM, Ng YK, Cartman ST, Winzer K, Minton NP (2012) Integration of DNA into bacterial chromosomes from plasmids without a counter-selection marker. Nucleic Acids Res 40(8):e59. doi:10.1093/nar/gkr1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tripathi SA, Olson DG, Argyros DA, Miller BB, Barrett TF, Murphy DM, McCool JD, Warner AK, Rajgarhia VB, Lynd LR, Hogsett DA, Caiazza NC (2010) Development of pyrF-based genetic system for targeted gene deletion in Clostridium thermocellum and creation of a pta mutant. Appl Environ Microbiol 76(19):6591–6599. doi:10.1128/AEM.01484-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nariya H, Miyata S, Suzuki M, Tamai E, Okabe A (2011) Development and application of a method for counterselectable in-frame deletion in Clostridium perfringens. Appl Environ Microbiol 77(4):1375–1382. doi:10.1128/AEM.01572-10

    Article  CAS  PubMed  Google Scholar 

  7. Dusseaux S, Croux C, Soucaille P, Meynial-Salles I (2013) Metabolic engineering of Clostridium acetobutylicum ATCC 824 for the high-yield production of a biofuel composed of an isopropanol/butanol/ethanol mixture. Metab Eng 18:1–8. doi:10.1016/j.ymben.2013.03.003

    Article  CAS  PubMed  Google Scholar 

  8. Argyros DA, Tripathi SA, Barrett TF, Rogers SR, Feinberg LF, Olson DG, Foden JM, Miller BB, Lynd LR, Hogsett DA, Caiazza NC (2011) High ethanol titers from cellulose by using metabolically engineered thermophilic, anaerobic microbes. Appl Environ Microbiol 77(23):8288–8294. doi:10.1128/AEM.00646-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Al-Hinai MA, Fast AG, Papoutsakis ET (2012) Novel system for efficient isolation of Clostridium double-crossover allelic exchange mutants enabling markerless chromosomal gene deletions and DNA integration. Appl Environ Microbiol 78(22):8112–8121. doi:10.1128/AEM.02214-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang Y, Grosse-Honebrink A, Minton NP (2015) A universal mariner transposon system for forward genetic studies in the genus Clostridium. PLoS One 10(4):e0122411. doi:10.1371/journal.pone.0122411

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kovacs K, Willson BJ, Schwarz K, Heap JT, Jackson A, Bolam DN, Winzer K, Minton NP (2013) Secretion and assembly of functional mini-cellulosomes from synthetic chromosomal operons in Clostridium acetobutylicum ATCC 824. Biotechnol Biofuels 6(1):117. doi:10.1186/1754-6834-6-117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Heap JT, Theys J, Ehsaan M, Kubiak AM, Dubois L, Paesmans K, Mellaert LV, Knox R, Kuehne SA, Lambin P, Minton NP (2014) Spores of Clostridium engineered for clinical efficacy and safety cause regression and cure of tumors in vivo. Oncotarget 5(7):1761–1769. doi:10.18632/oncotarget.1761

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shubeita HE, Sambrook JF, McCormick AM (1987) Molecular cloning and analysis of functional cDNA and genomic clones encoding bovine cellular retinoic acid-binding protein. Proc Natl Acad Sci U S A 84(16):5645–5649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smith CJ, Markowitz SM, Macrina FL (1981) Transferable tetracycline resistance in Clostridium difficile. Antimicrob Agents Chemother 19(6):997–1003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cartman ST, Minton NP (2010) A mariner-based transposon system for in vivo random mutagenesis of Clostridium difficile. Appl Environ Microbiol 76(4):1103–1109. doi:10.1128/AEM.02525-09

    Article  CAS  PubMed  Google Scholar 

  16. Heap JT, Pennington OJ, Cartman ST, Minton NP (2009) A modular system for Clostridium shuttle plasmids. J Microbiol Methods 78(1):79–85. doi:10.1016/j.mimet.2009.05.004

    Article  CAS  PubMed  Google Scholar 

  17. Chambers SP, Prior SE, Barstow DA, Minton NP (1988) The pMTL nic - cloning vectors. I. Improved pUC polylinker regions to facilitate the use of sonicated DNA for nucleotide sequencing. Gene 68(1):139–149. doi:10.1016/0378-1119(88)90606-3

    Article  CAS  PubMed  Google Scholar 

  18. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA III, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6(5):343–345. doi:10.1038/nmeth.1318

    Article  CAS  PubMed  Google Scholar 

  19. Lund AM, Kildegaard HF, Petersen MB, Rank J, Hansen BG, Andersen MR, Mortensen UH (2014) A versatile system for USER cloning-based assembly of expression vectors for mammalian cell engineering. PLoS One 9(5):e96693. doi:10.1371/journal.pone.0096693

    Article  PubMed  PubMed Central  Google Scholar 

  20. de Kok S, Stanton LH, Slaby T, Durot M, Holmes VF, Patel KG, Platt D, Shapland EB, Serber Z, Dean J, Newman JD, Chandran SS (2014) Rapid and reliable DNA assembly via ligase cycling reaction. ACS Synth Biol 3(2):97–106. doi:10.1021/sb4001992

    Article  PubMed  Google Scholar 

  21. Engler C, Marillonnet S (2011) Generation of families of construct variants using golden gate shuffling. Methods Mol Biol 729:167–181. doi:10.1007/978-1-61779-065-2_11

    Article  CAS  PubMed  Google Scholar 

  22. Warrens AN, Jones MD, Lechler RI (1997) Splicing by overlap extension by PCR using asymmetric amplification: an improved technique for the generation of hybrid proteins of immunological interest. Gene 186(1):29–35. doi:10.1016/S0378-1119(96)00674-9

    Article  CAS  PubMed  Google Scholar 

  23. Purdy D, O’Keeffe TAT, Elmore M, Herbert M, McLeod A, Bokori-Brown M, Ostrowski A, Minton NP (2002) Conjugative transfer of clostridial shuttle vectors from Escherichia coli to Clostridium difficile through circumvention of the restriction barrier. Mol Microbiol 46(2):439–452. doi:10.1046/j.1365-2958.2002.03134.x

    Article  CAS  PubMed  Google Scholar 

  24. Minton NP, Ehsaan M, Humphreys CM, Little GT, Baker J, Henstra AM, Liew F, Kelly ML, Sheng L, Schwarz K, Zhang Y (2016) A roadmap for gene system development in Clostridium. Anaerobe. 2016 May 24. pii: S1075-9964(16)30064-6. doi:10.1016/j.anaerobe.2016.05.011

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of the UK Medical Research Council (G0601176) and the UK Biotechnology and Biological Sciences Research Council (BB/L013940/1 and BB/G016224/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nigel P. Minton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ehsaan, M., Kuehne, S.A., Minton, N.P. (2016). Clostridium difficile Genome Editing Using pyrE Alleles. In: Roberts, A., Mullany, P. (eds) Clostridium difficile. Methods in Molecular Biology, vol 1476. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6361-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6361-4_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6359-1

  • Online ISBN: 978-1-4939-6361-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics