Skip to main content

Knockdown of Nuclear-Located Enhancer RNAs and Long ncRNAs Using Locked Nucleic Acid GapmeRs

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1468))

Abstract

The human genome is widely transcribed outside of protein-coding genes, producing thousands of noncoding RNAs from different subfamilies including enhancer RNAs. Functional studies to determine the role of individual genes are challenging with noncoding RNAs appearing to be more difficult to knockdown than mRNAs. One factor that may have hindered progress is that the majority of noncoding RNAs are thought to be located within the nucleus, where the efficiency of traditional RNA interference techniques is debatable. Here we present an alternative RNA interference technique utilizing Locked Nucleic Acids, which is able to efficiently knockdown noncoding RNAs irrespective of intracellular location.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fire A, Xu S, Montgomery MK et al (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    Article  CAS  PubMed  Google Scholar 

  2. Cech TR, Steitz JA (2014) The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157:77–94

    Article  CAS  PubMed  Google Scholar 

  3. Iyer MK, Niknafs YS, Malik R et al (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47:199–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Andersson R, Gebhard C, Miguel-Escalada I et al (2014) An atlas of active enhancers across human cell types and tissues. Nature 507:455–461

    Article  CAS  PubMed  Google Scholar 

  5. Natoli G, Andrau J-C (2012) Noncoding transcription at enhancers: general principles and functional models. http://dxdoiorg/101146/annurev-genet-110711-155459 46:1–19

    Google Scholar 

  6. Ørom UA, Shiekhattar R (2013) Long noncoding RNAs usher in a new era in the biology of enhancers. Cell 154:1190–1193

    Article  PubMed  PubMed Central  Google Scholar 

  7. Gagnon KT, Li L, Chu Y et al (2014) RNAi factors are present and active in human cell nuclei. Cell Rep 6:211–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Robb GB, Brown KM, Khurana J, Rana TM (2005) Specific and potent RNAi in the nucleus of human cells. Nat Struct Mol Biol 12:133–137

    Article  CAS  PubMed  Google Scholar 

  9. Lam MTY, Cho H, Lesch HP et al (2013) Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature 498(7455):511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li W, Notani D, Ma Q et al (2013) Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498(7455):516–520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Braasch DA, Corey DR (2001) Locked nucleic acid (LNA): fine-tuning the recognition of DNA and RNA. Chem Biol 8:1–7

    Article  CAS  PubMed  Google Scholar 

  12. Veedu RN, Wengel J (2010) Locked nucleic acids: promising nucleic acid analogs for therapeutic applications. Chem Biodivers 7:536–542

    Article  CAS  PubMed  Google Scholar 

  13. Kurreck J, Wyszko E, Gillen C, Erdmann VA (2002) Design of antisense oligonucleotides stabilized by locked nucleic acids. Nucleic Acids Res 30:1911–1918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wahlestedt C, Salmi P, Good L et al (2000) Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc Natl Acad Sci U S A 97:5633–5638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. IIott NE, Heward JA, Roux BT et al (2014) Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes. Nat Commun 5:3979

    Article  PubMed  PubMed Central  Google Scholar 

  16. Whitehead KA, Dahlman JE, Langer RS, Anderson DG (2011) Silencing or stimulation? siRNA delivery and the immune system. Ann Rev Chem Biomol Eng 2:77–96

    Article  CAS  Google Scholar 

  17. Deleavey GF, Damha MJ (2012) Designing chemically modified oligonucleotides for targeted gene silencing. Chem Biol 19:937–954

    Article  CAS  PubMed  Google Scholar 

  18. Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11:125–140

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Stanton R, Sciabola S, Salatto C et al (2012) Chemical modification study of antisense gapmers. Nucleic Acid Ther 22:344–359

    CAS  PubMed  Google Scholar 

  20. Ideue T, Hino K, Kitao S et al (2009) Efficient oligonucleotide-mediated degradation of nuclear noncoding RNAs in mammalian cultured cells. RNA 15:1578–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Semizarov D, Frost L, Sarthy A et al (2003) Specificity of short interfering RNA determined through gene expression signatures. Proc Natl Acad Sci U S A 100:6347–6352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Persengiev SP, Zhu X, Green MR (2004) Nonspecific, concentration-dependent stimulation and repression of mammalian gene expression by small interfering RNAs (siRNAs). RNA 10:12–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Jackson AL, Bartz SR, Schelter J et al (2003) Expression profiling reveals off-target gene regulation by RNAi. Nat Biotechnol 21:635–637

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Heward Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Roux, B.T., Lindsay, M.A., Heward, J.A. (2017). Knockdown of Nuclear-Located Enhancer RNAs and Long ncRNAs Using Locked Nucleic Acid GapmeRs. In: Ørom, U. (eds) Enhancer RNAs. Methods in Molecular Biology, vol 1468. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-4035-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-4035-6_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-4033-2

  • Online ISBN: 978-1-4939-4035-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics