Skip to main content

Single-Molecule Imaging to Characterize the Transport Mechanism of the Nuclear Pore Complex

  • Protocol
  • First Online:
Chromosome Architecture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1431))

Abstract

In the eukaryotic cell, a large macromolecular channel, known as the Nuclear Pore Complex (NPC), mediates all molecular transport between the nucleus and cytoplasm. In recent years, single-molecule fluorescence (SMF) imaging has emerged as a powerful tool to study the molecular mechanism of transport through the NPC. More recently, techniques such as single-molecule localization microscopy (SMLM) have enabled the spatial and temporal distribution of cargos, transport receptors and even structural components of the NPC to be determined with nanometre accuracy. In this protocol, we describe a method to study the position and/or motion of individual molecules transiting through the NPC with high spatial and temporal precision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Devos D, Dokudovskaya S, Williams R, Alber F, Eswar N, Chait BT, Rout MP, Sali A (2006) Simple fold composition and modular architecture of the nuclear pore complex. Proc Natl Acad Sci U S A 103(7):2172–2177. doi:10.1073/pnas.0506345103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Grossman E, Medalia O, Zwerger M (2012) Functional architecture of the nuclear pore complex. Annu Rev Biophys 41:557–584. doi:10.1146/annurev-biophys-050511-102328

    Article  CAS  PubMed  Google Scholar 

  3. Terry LJ, Shows EB, Wente SR (2007) Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318(5855):1412–1416. doi:10.1126/science.1142204

    Article  CAS  PubMed  Google Scholar 

  4. Kalderon D, Roberts BL, Richardson WD, Smith AE (1984) A short amino acid sequence able to specify nuclear location. Cell 39(3 Pt 2):499–509

    Article  CAS  PubMed  Google Scholar 

  5. Cingolani G, Petosa C, Weis K, Müller CW (1999) Structure of importin-beta bound to the IBB domain of importin-alpha. Nature 399(6733):221–229. doi:10.1038/20367

    Article  CAS  PubMed  Google Scholar 

  6. Ribbeck K, Görlich D (2001) Kinetic analysis of translocation through nuclear pore complexes. EMBO J 20(6):1320–1330. doi:10.1093/emboj/20.6.1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Izaurralde E, Kutay U, von Kobbe C, Mattaj IW, Gorlich D (1997) The asymmetric distribution of the constituents of the Ran system is essential for transport into and out of the nucleus. EMBO J 16(21):6535–6547. doi:10.1093/emboj/16.21.6535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kalab P, Weis K, Heald R (2002) Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science 295(5564):2452–2456. doi:10.1126/science.1068798

    Article  CAS  PubMed  Google Scholar 

  9. Görlich D, Panté N, Kutay U, Aebi U, Bischoff FR (1996) Identification of different roles for RanGDP and RanGTP in nuclear protein import. EMBO J 15(20):5584–5594

    PubMed  PubMed Central  Google Scholar 

  10. Rout MP, Aitchison JD, Magnasco MO, Chait BT (2003) Virtual gating and nuclear transport: the hole picture. Trends Cell Biol 13(12):622–628

    Article  CAS  PubMed  Google Scholar 

  11. Frey S, Richter RP, Görlich D (2006) FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314(5800):815–817. doi:10.1126/science.1132516

    Article  CAS  PubMed  Google Scholar 

  12. Frey S, Görlich D (2007) A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 130(3):512–523. doi:10.1016/j.cell.2007.06.024

    Article  CAS  PubMed  Google Scholar 

  13. Lowe AR, Tang JH, Yassif J, Graf M, Huang WY, Groves JT, Weis K, Liphardt JT (2015) Importin-β modulates the permeability of the nuclear pore complex in a Ran-dependent manner. eLife 4:doi:10.7554/eLife.04052

    Article  Google Scholar 

  14. Bestembayeva A, Kramer A, Labokha AA, Osmanović D, Liashkovich I, Orlova EV, Ford IJ, Charras G, Fassati A, Hoogenboom BW (2015) Nanoscale stiffness topography reveals structure and mechanics of the transport barrier in intact nuclear pore complexes. Nat Nanotechnol 10(1):60–64. doi:10.1038/nnano.2014.262

    Article  CAS  PubMed  Google Scholar 

  15. Adam SA, Marr RS, Gerace L (1990) Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J Cell Biol 111(3):807–816

    Article  CAS  PubMed  Google Scholar 

  16. Dange T, Grünwald D, Grünwald A, Peters R, Kubitscheck U (2008) Autonomy and robustness of translocation through the nuclear pore complex: a single-molecule study. J Cell Biol 183(1):77–86. doi:10.1083/jcb.200806173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Yang W, Musser SM (2006) Nuclear import time and transport efficiency depend on importin beta concentration. J Cell Biol 174(7):951–961. doi:10.1083/jcb.200605053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kubitscheck U, Grünwald D, Hoekstra A, Rohleder D, Kues T, Siebrasse JP, Peters R (2005) Nuclear transport of single molecules: dwell times at the nuclear pore complex. J Cell Biol 168(2):233–243. doi:10.1083/jcb.200411005

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kahms M, Lehrich P, Hüve J, Sanetra N, Peters R (2009) Binding site distribution of nuclear transport receptors and transport complexes in single nuclear pore complexes. Traffic 10(9):1228–1242. doi:10.1111/j.1600-0854.2009.00947.x

    Article  CAS  PubMed  Google Scholar 

  20. Tokunaga M, Imamoto N, Sakata-Sogawa K (2008) Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods 5(2):159–161. doi:10.1038/nmeth1171

    Article  CAS  PubMed  Google Scholar 

  21. Ma J, Yang W (2010) Three-dimensional distribution of transient interactions in the nuclear pore complex obtained from single-molecule snapshots. Proc Natl Acad Sci U S A 107(16):7305–7310. doi:10.1073/pnas.0908269107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang W (2013) Distinct, but not completely separate spatial transport routes in the nuclear pore complex. Nucleus 4(3):166–175. doi:10.4161/nucl.24874

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lowe AR, Siegel JJ, Kalab P, Siu M, Weis K, Liphardt JT (2010) Selectivity mechanism of the nuclear pore complex characterized by single cargo tracking. Nature 467(7315):600–603. doi:10.1038/nature09285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun C, Yang W, Tu LC, Musser SM (2008) Single-molecule measurements of importin alpha/cargo complex dissociation at the nuclear pore. Proc Natl Acad Sci U S A 105(25):8613–8618. doi:10.1073/pnas.0710867105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science (NY) 313(5793):1642–1645. doi:10.1126/science.1127344

    Article  CAS  Google Scholar 

  26. Rust M, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3(10):793–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Heilemann M, van de Linde S, Mukherjee A, Sauer M (2009) Super-resolution imaging with small organic fluorophores. Angew Chem Int Ed Engl 48(37):6903–6908. doi:10.1002/anie.200902073

    Article  CAS  PubMed  Google Scholar 

  28. Löschberger A, van de Linde S, Dabauvalle MC, Rieger B, Heilemann M, Krohne G, Sauer M (2012) Super-resolution imaging visualizes the eightfold symmetry of gp210 proteins around the nuclear pore complex and resolves the central channel with nanometer resolution. J Cell Sci 125(Pt 3):570–575. doi:10.1242/jcs.098822

    Article  PubMed  Google Scholar 

  29. Löschberger A, Franke C, Krohne G, van de Linde S, Sauer M (2014) Correlative super-resolution fluorescence and electron microscopy of the nuclear pore complex with molecular resolution. J Cell Sci 127(Pt 20):4351–4355. doi:10.1242/jcs.156620

    Article  PubMed  Google Scholar 

  30. Szymborska A, de Marco A, Daigle N, Cordes VC, Briggs JA, Ellenberg J (2013) Nuclear pore scaffold structure analyzed by super-resolution microscopy and particle averaging. Science 341(6146):655–658. doi:10.1126/science.1240672

    Article  CAS  PubMed  Google Scholar 

  31. Henriques R, Lelek M, Fornasiero EF, Valtorta F, Zimmer C, Mhlanga MM (2010) QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ. Nat Methods 7(5):339–340. doi:10.1038/nmeth0510-339

    Article  CAS  PubMed  Google Scholar 

  32. Ovesny M, Krizek P, Borkovec J, Svindrych Z, Hagen GM (2014) ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging. Bioinformatics 30(16):2389–2390. doi:10.1093/bioinformatics/btu202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Starr R, Stahlheber S, Small A (2012) Fast maximum likelihood algorithm for localization of fluorescent molecules. Opt Lett 37(3):413–415

    Article  PubMed  Google Scholar 

  34. Crocker J, Grier D (1996) Methods of digital video microscopy for colloidal studies. J Colloid Interface Sci 179(1):298–310

    Article  CAS  Google Scholar 

  35. Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S, Schmid SL, Danuser G (2008) Robust single-particle tracking in live-cell time-lapse sequences. Nat Methods 5(8):695–702. doi:10.1038/nmeth.1237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Thompson R, Larson D, Webb W (2002) Precise nanometer localization analysis for individual fluorescent probes. Biophys J 82(5):2775–2783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Grace Jeremy is supported by a Wellcome Trust studentship. We thank Anthony Roberts for criticial reading of the manuscript. We also thank the Hayward, Waksman and Fassati labs for contributions of reagents, equipment, and expertise. The Lowe lab acknowledges support from the Medical Research Council award MR/K015826/1 Super Resolution Imaging for Cell Biology and Neuroscience at UCL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan R. Lowe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jeremy, G., Stevens, J., Lowe, A.R. (2016). Single-Molecule Imaging to Characterize the Transport Mechanism of the Nuclear Pore Complex. In: Leake, M. (eds) Chromosome Architecture. Methods in Molecular Biology, vol 1431. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-3631-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-3631-1_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-3629-8

  • Online ISBN: 978-1-4939-3631-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics