Skip to main content

Global Run-On Sequencing (GRO-seq) Library Preparation from Drosophila Ovaries

  • Protocol
Drosophila Oogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1328))

Abstract

In the past decade, deep-sequencing approaches have greatly improved our knowledge of the genome’s potential and have become a crucial milestone for new discoveries in genomics. Transcription is the first step of gene expression; therefore, the detection and measurement of transcription rates is of great interest. Here, a detailed protocol for global run-on sequencing (GRO-seq) library preparation from Drosophila ovaries is described. The method relies on rapid isolation of nuclei with halted transcription, then restarting transcription in physiological conditions in the presence of a labeled nucleotide. The newly transcribed nascent RNA is then isolated and cloned using a small RNA cloning protocol. Although it is time-consuming, the global run-on method allows the user to profile the position, orientation and amount of transcriptionally engaged RNA polymerases across the genome, therefore providing a snapshot of genome-wide transcription.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zentner GE, Henikoff S (2014) High-resolution digital profiling of the epigenome. Nat Rev Genet 15:814–827

    Article  CAS  PubMed  Google Scholar 

  2. Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Cech TR, Steitz JA (2014) The noncoding RNA revolution-trashing old rules to forge new ones. Cell 157:77–94

    Article  CAS  PubMed  Google Scholar 

  4. Rinn JL, Chang HY (2012) Genome regulation by long noncoding RNAs. Annu Rev Biochem 81:145–166

    Article  CAS  PubMed  Google Scholar 

  5. Sabin LR, Delas MJ, Hannon GJ (2013) Dogma derailed: the many influences of RNA on the genome. Mol Cell 49:783–794

    Article  CAS  PubMed  Google Scholar 

  6. Core LJ, Waterfall JJ, Lis JT (2008) Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science 322:1845–1848

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Ingolia NT, Ghaemmaghami S, Newman JR et al (2009) Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling. Science 324:218–223

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Batut P, Dobin A, Plessy C et al (2013) High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression. Genome Res 23:169–180

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Chang H, Lim J, Ha M et al (2014) TAIL-seq: genome-wide determination of poly(A) tail length and 3′ end modifications. Mol Cell 53:1044–1052

    Article  CAS  PubMed  Google Scholar 

  10. Kwak H, Fuda NJ, Core LJ et al (2013) Precise maps of RNA polymerase reveal how promoters direct initiation and pausing. Science 339:950–953

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Churchman LS, Weissman JS (2012) Native elongating transcript sequencing (NET-seq). Curr Protoc Mol Biol Chapter 4;Unit 4, 14, 11–17

    Google Scholar 

  12. Khodor YL, Rodriguez J, Abruzzi KC et al (2011) Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila. Genes Dev 25:2502–2512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Paulsen MT, Veloso A, Prasad J et al (2014) Use of Bru-Seq and BruChase-Seq for genome-wide assessment of the synthesis and stability of RNA. Methods 67:45–54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Rozhkov NV, Hammell M, Hannon GJ (2013) Multiple roles for Piwi in silencing Drosophila transposons. Genes Dev 27:400–412

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Core LJ, Waterfall JJ, Gilchrist DA et al (2012) Defining the status of RNA polymerase at promoters. Cell Rep 2:1025–1035

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Chopra VS, Hendrix DA, Core LJ et al (2011) The polycomb group mutant esc leads to augmented levels of paused Pol II in the Drosophila embryo. Mol Cell 42:837–844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Larschan E, Bishop EP, Kharchenko PV et al (2011) X chromosome dosage compensation via enhanced transcriptional elongation in Drosophila. Nature 471:115–118

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Mohn F, Sienski G, Handler D et al (2014) The rhino-deadlock-cutoff complex licenses noncanonical transcription of dual-strand piRNA clusters in Drosophila. Cell 157:1364–1379

    Article  CAS  PubMed  Google Scholar 

  19. Hafner M, Renwick N, Farazi TA et al (2012) Barcoded cDNA library preparation for small RNA profiling by next-generation sequencing. Methods 58:164–170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. McGinn J, Czech B (2014) Small RNA library construction for high-throughput sequencing. Methods Mol Biol 1093:195–208

    Article  CAS  PubMed  Google Scholar 

  21. Shpiz S, Olovnikov I, Sergeeva A et al (2011) Mechanism of the piRNA-mediated silencing of Drosophila telomeric retrotransposons. Nucleic Acids Res 39:8703–8711

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Sigova A, Vagin V, Zamore PD (2006) Measuring the rates of transcriptional elongation in the female Drosophila melanogaster germ line by nuclear run-on. Cold Spring Harb Symp Quant Biol 71:335–341

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I thank J. Lis and A. Kalmykova laboratories for their efforts on improving GRO-seq and run-on protocols, respectively, which influenced the present work. I am grateful to Leah Sabin for critical reading of the manuscript, language editing, and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay V. Rozhkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rozhkov, N.V. (2015). Global Run-On Sequencing (GRO-seq) Library Preparation from Drosophila Ovaries. In: Bratu, D., McNeil, G. (eds) Drosophila Oogenesis. Methods in Molecular Biology, vol 1328. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2851-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2851-4_16

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2850-7

  • Online ISBN: 978-1-4939-2851-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics