Skip to main content

Immuno-Electron Microscopy and Electron Microscopic In Situ Hybridization for Visualizing piRNA Biogenesis Bodies in Drosophila Ovaries

  • Protocol
Book cover Drosophila Oogenesis

Abstract

Immuno-electron microscopy and electron microscopic in situ hybridization are powerful tools to identify the precise subcellular localization of specific proteins and RNAs at the ultramicroscopic level. Here we describe detailed procedures for how to detect the precise location of a specific target labeled with both fluorescence and gold particles. Although they have been developed for the analysis of Drosophila ovarian somatic cells, these techniques are suitable for a wide range of biological applications including human, primate, and rodent analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siomi MC, Sato K, Pezic D et al (2011) PIWI-interacting small RNAs: the vanguard of genome defence. Nat Rev Mol Cell Biol 12:246–258

    Article  CAS  PubMed  Google Scholar 

  2. Juliano C, Wang J, Lin H (2011) Uniting germline and stem cells: the function of Piwi proteins and the piRNA pathway in diverse organisms. Annu Rev Genet 45:447–469

    Article  CAS  PubMed  Google Scholar 

  3. Ishizu H, Siomi H, Siomi MC (2012) Biology of PIWI-interacting RNAs: new insights into biogenesis and function inside and outside of germlines. Genes Dev 26:2361–2373

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Malone CD, Brennecke J, Dus M et al (2009) Specialized piRNA pathways act in germline and somatic tissues of the Drosophila ovary. Cell 137:522–535

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Brennecke J, Aravin AA, Stark A et al (2007) Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–1103

    Article  CAS  PubMed  Google Scholar 

  6. Vagin VV, Sigova A, Li C et al (2006) A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313:320–324

    Article  CAS  PubMed  Google Scholar 

  7. Saito K, Nishida KM, Mori T et al (2006) Specific association of Piwi with rasiRNAs derived from retrotransposon and heterochromatic regions in the Drosophila genome. Genes Dev 20:2214–2222

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Aravin A, Gaidatzis D, Pfeffer S et al (2006) A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442:203–207

    CAS  PubMed  Google Scholar 

  9. Gunawardane LS, Saito K, Nishida KM et al (2007) A slicer-mediated mechanism for repeat-associated siRNA 5′ end formation in Drosophila. Science 315:1587–1590

    Article  CAS  PubMed  Google Scholar 

  10. Saito K, Ishizu H, Komai M et al (2010) Roles for the Yb body components Armitage and Yb in primary piRNA biogenesis in Drosophila. Genes Dev 24:2493–2498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Olivieri D, Sykora MM, Sachidanandam R et al (2010) An in vivo RNAi assay identifies major genetic and cellular requirements for primary piRNA biogenesis in Drosophila. EMBO J 29:3301–3317

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Handler D, Olivieri D, Novatchkova M et al (2011) A systematic analysis of Drosophila TUDOR domain-containing proteins identifies Vreteno and the Tdrd12 family as essential primary piRNA pathway factors. EMBO J 30:3977–3993

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Olivieri D, Senti KA, Subramanian S et al (2012) The cochaperone shutdown defines a group of biogenesis factors essential for all piRNA populations in Drosophila. Mol Cell 47:954–969

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Qi H, Watanabe T, Ku HY et al (2011) The Yb body, a major site for Piwi-associated RNA biogenesis and a gateway for Piwi expression and transport to the nucleus in somatic cells. J Biol Chem 286:3789–3797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Szakmary A, Reedy M, Qi H et al (2009) The Yb protein defines a novel organelle and regulates male germline stem cell self-renewal in Drosophila melanogaster. J Cell Biol 185:613–627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Murota Y, Ishizu H, Nakagawa S et al (2014) Yb integrates piRNA intermediates and processing factors into perinuclear bodies to enhance piRISC assembly. Cell Rep 8:103–113

    Article  CAS  PubMed  Google Scholar 

  17. Matsuno A, Nagashima T, Ohsugi Y et al (2000) Electron microscopic observation of intracellular expression of mRNA and its protein product: technical review on ultrastructural in situ hybridization and its combination with immunohistochemistry. Histol Histopathol 15:261–268

    CAS  PubMed  Google Scholar 

  18. Herrera GA (1992) Ultrastructural immunolabeling: a general overview of techniques and applications. Ultrastruct Pathol 16:37–45

    Article  CAS  PubMed  Google Scholar 

  19. Zhang L, Kaneko S, Kikuchi K et al (2014) Rewiring of regenerated axons by combining treadmill training with semaphorin3A inhibition. Mol Brain 7:14

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Takano M, Kawabata S, Komaki Y et al (2014) Inflammatory cascades mediate synapse elimination in spinal cord compression. J Neuroinflammation 11:40

    Article  PubMed Central  PubMed  Google Scholar 

  21. Numasawa-Kuroiwa Y, Okada Y, Shibata S et al (2014) Involvement of ER stress in dysmyelination of Pelizaeus-Merzbacher disease with PLP1 missense mutations shown by iPSC-derived oligodendrocytes. Stem Cell Rep 2:648–661

    Article  CAS  Google Scholar 

  22. Nishimoto Y, Nakagawa S, Hirose T et al (2013) The long non-coding RNA nuclear-enriched abundant transcript 1_2 induces paraspeckle formation in the motor neuron during the early phase of amyotrophic lateral sclerosis. Mol Brain 6:31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Takano M, Hikishima K, Fujiyoshi K et al (2012) MRI characterization of paranodal junction failure and related spinal cord changes in mice. PLoS One 7, e52904

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Yasuda A, Tsuji O, Shibata S et al (2011) Significance of remyelination by neural stem/progenitor cells transplanted into the injured spinal cord. Stem Cells 29:1983–1994

    Article  PubMed  Google Scholar 

  25. Nagoshi N, Shibata S, Hamanoue M et al (2011) Schwann cell plasticity after spinal cord injury shown by neural crest lineage tracing. Glia 59:771–784

    Article  PubMed  Google Scholar 

  26. Tada H, Okano HJ, Takagi H et al (2010) Fbxo45, a novel ubiquitin ligase, regulates synaptic activity. J Biol Chem 285:3840–3849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Kumagai G, Okada Y, Yamane J et al (2009) Roles of ES cell-derived gliogenic neural stem/progenitor cells in functional recovery after spinal cord injury. PLoS One 4, e7706

    Article  PubMed Central  PubMed  Google Scholar 

  28. Saito K (2014) RNAi and overexpression of genes in ovarian somatic cells. Methods Mol Biol 1093:25–33

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. S. Nakagawa for providing insightful discussions and dedicated support to our project. We thank T. Yano at Electron microscope laboratory and G. Itai at Keio-med Open Access Facility for their special technical support and also thank all members of the Siomi and Okano laboratories for their invaluable comments. This work was supported by a Grant-in-Aid for Scientific Research from MEXT, Japan; a grant from Keio Gijuku Academic Development Funds to S.S.; and a grant from Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) to S.S. and H.O. The authors have no conflicts of interest to declare.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shinsuke Shibata or Mikiko C. Siomi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Shibata, S. et al. (2015). Immuno-Electron Microscopy and Electron Microscopic In Situ Hybridization for Visualizing piRNA Biogenesis Bodies in Drosophila Ovaries. In: Bratu, D., McNeil, G. (eds) Drosophila Oogenesis. Methods in Molecular Biology, vol 1328. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2851-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2851-4_12

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2850-7

  • Online ISBN: 978-1-4939-2851-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics