Skip to main content

The Adverse Outcome Pathway: A Conceptual Framework to Support Toxicity Testing in the Twenty-First Century

  • Protocol

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

The need to rapidly characterize the risk of large numbers of chemicals has moved the traditional toxicological paradigm from animal testing to a pathway-based approach using in vitro assay systems and modeling where possible. Adverse Outcome Pathways (AOPs) provide a conceptual framework that can be used to link in vitro assay results to whole animal effects in a pathway context. AOPs are defined and examples are provided to demonstrate key characteristics of AOPs. To support development and application of AOPs, a knowledge base has been developed containing a Wiki site designed to permit documentation of AOPs in a crowd-sourced manner. Both empirical and computational methods are demonstrated to play a significant role in AOP development. The combination of computational approaches, including different modeling efforts, together with apical end points within the pathway-based framework will allow for a better understanding of the linkage of events from a molecular initiating event to a potential adverse outcome, therefore defining key events, AOPs, and even networks of AOPS. While these approaches are indeed very promising, the ability to understand and define key events and key event relationships will remain one of the more complex and challenging efforts within AOP development. In order to make AOPs useful for risk assessment these challenges need to be understood and overcome. An interdisciplinary approach including apical and molecular measurements, computational, and modeling efforts is currently being one of the most promising approaches to ensure AOPs become the useful framework they were designed to be.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. United States Code (2012) Federal Insecticide, Fungicide, and Rodenticide Act. United States Senate. http://www.ag.senate.gov/download/fifra. Accessed 20 Jan 2015

  2. United States Environmental Protection Agency (2014) TSCA chemical substance inventory. United States Environmental Protection Agency. http://www.epa.gov/oppt/existingchemicals/pubs/tscainventory. Accessed 14 March 2014

  3. United States Public Law (1976) Toxic Substances Control Act. United States Senate Public Law 94-469. http://www.gpo.gov/fdsys/pkg/STATUTE-90/pdf/STATUTE-90-Pg2003.pdf. Accessed 20 Jan 2015

  4. Rovida C, Hartung T (2009) Re-evaluation of animal numbers and costs for in vivo tests to accomplish REACH legislation requirements for chemicals – a report by the transatlantic think tank for toxicology (t(4)). ALTEX 26:187–208

    PubMed  Google Scholar 

  5. European Commission (2003) Directive 2003/15/EC (7th Amendment to the European Cosmetics Directive 76/768/EEC). http://ec.europa.eu/consumers/sectors/cosmetics/files/doc/antest/%282%29_executive_summary_en.pdf. Accessed 14 Mar 2014

  6. European Parliament (2010) Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the protection of animals used for scientific purpose. Official J Eur Union L276:33–79

    Google Scholar 

  7. Schiffelers M-JWA, Blaauboer BJ, Hendriksen CFM et al (2012) Regulatory acceptance and use of 3R models: a multilevel perspective. ALTEX 29:287–300

    Article  PubMed  Google Scholar 

  8. US National Research Council Committee on Toxicity (2007) Toxicity testing in the 21st century. The National Academies Press, Washington, DC

    Google Scholar 

  9. Ankley GT, Bennett RS, Erickson RJ et al (2010) Adverse outcome pathways: a conceptual framework to support ecotoxicology research and risk assessment. Environ Toxicol Chem 29:730–741

    Article  CAS  PubMed  Google Scholar 

  10. Andersen ME, Krewski D (2008) Toxicity testing in the 21st century: bringing the vision to life. Toxicol Sci 107:324–330

    Article  PubMed  Google Scholar 

  11. Cote I, Anastas PT, Birnbaum LS et al (2012) Advancing the next generation of health risk assessment. Environ Health Perspect 120:1499–1502

    Article  PubMed Central  PubMed  Google Scholar 

  12. Villeneuve D, Garcia-Reyero N (2010) Vision and strategy: predictive ecotoxicology in the 21st century. Environ Toxicol Chem 30:1–8

    Article  Google Scholar 

  13. National Institutes for Health (2014) Tox21 program. National Center for Advancing Translational Sciences. http://www.ncats.nih.gov/research/reengineering/tox21/tox21.html. Accessed 20 Jan 2015

  14. Bradbury SP, Feijtel TC, Van Leeuwen CJ (2004) Meeting the scientific needs of ecological risk assessment in a regulatory context. Environ Sci Tecnol 38:463A–470A

    Article  CAS  Google Scholar 

  15. Haux C, Forlin L (1988) Biochemical methods for detecting effects of contaminants on fish. Ambio 17:376–380

    Google Scholar 

  16. Boobis AR, Cohen SM, Dellarco V et al (2006) IPCS framework for analyzing the relevance of a cancer mode of action for humans. Crit Rev Toxicol 36:781–792

    Article  PubMed  Google Scholar 

  17. Cohen SM, Boobis AR, Meek ME et al (2006) 4-Aminobiphenyl and DNA reactivity: case study within the context of the 2006 IPCS Human Relevance Framework for Analysis of a cancer mode of action for humans. Crit Rev Toxicol 36:803–819

    Article  CAS  PubMed  Google Scholar 

  18. Dellarco VL, McGregor D, Berry SC et al (2006) Thiazopyr and thyroid disruption: case study within the context of the 2006 IPCS Human Relevance Framework for analysis of a cancer mode of action. Crit Rev Toxicol 36:793–801

    Article  CAS  PubMed  Google Scholar 

  19. Boobis AR, Doe JE, Heinrich-Hirsch B et al (2008) IPCS framework for analyzing the relevance of a noncancer mode of action for humans. Crit Rev Toxicol 38:87–96

    Article  CAS  PubMed  Google Scholar 

  20. Hill AB (1965) The environment and disease: association or causation? Proc R Soc Med 58:295–300

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Meek ME, Boobis A, Cote I et al (2014) New developments in the evolution and application of the WHO/IPCS framework on mode of action/species concordance analysis. J Appl Toxicol 34:1–18

    Article  CAS  PubMed  Google Scholar 

  22. Organization for Economic Co-operation and Development (2011) Testing of chemicals: adverse outcome pathways, molecular screening and toxicogenomics. http://www.oecd.org/chemicalsafety/testing/adverse-outcome-pathways-molecular-screening-and-toxicogenomics.htm. Accessed 20 Jan 2015

  23. OECD, Organization for Economic Co-operation and Development (2011) Report of the workshop on using mechanistic information in forming chemical categories, Series on testing and assessment, No. 138 ENV/JM/MONO(2011)8. Organization for Economic Cooperation and Development, Environment Directorate, Paris, France, p 45

    Google Scholar 

  24. Adverse Outcome Knowledge Base (2014) Users handbook supplement to the guidance for developing and assessing AOPs. https://aopkb.org/common/AOP_Handbook.pdf. Accessed 20 Jan 2015

  25. Adverse Outcome Knowledge Base (2014) Adverse outcome pathway knowledge base (AOP-KB). www.aopkb.org. Accessed 20 Jan 2015

  26. Villeneuve DL, Crump D, Garcia-Reyero N et al (2014) Adverse outcome pathway (AOP) development I: strategies and principles. Toxicol Sci 142:312–320

    Article  CAS  PubMed  Google Scholar 

  27. Villeneuve DL, Crump D, Garcia-Reyero N et al (2014) Adverse outcome pathway development II: best practices. Toxicol Sci 142:321–330

    Article  CAS  PubMed  Google Scholar 

  28. Villeneuve D, Volz DC, Embry MR et al (2014) Investigating alternatives to the fish early-life stage test: a strategy for discovering and annotating adverse outcome pathways for early fish development. Environ Toxicol Chem 33:158–169

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. OECD, Organization for Economic Co-operation and Development (2013) Guidance document on developing and assessing adverse outcome pathways, Series on testing and assessment, No. 184 ENV/JM/MONO(2013)6. Organization for Economic Cooperation and Development, Environment Directorate, Paris, France, p 45

    Google Scholar 

  30. Volz DC, Belanger S, Embry M et al (2011) Adverse outcome pathways during early fish development: a conceptual framework for identification of chemical screening and prioritization strategies. Toxicol Sci 123:349–358

    Article  CAS  PubMed  Google Scholar 

  31. MacKay C, Davies M, Summerfield V et al (2013) From pathways to people: applying the adverse outcome pathway (AOP) for skin sensitization to risk assessment. ALTEX 30:473–486

    Article  PubMed  Google Scholar 

  32. Vinken M, Landesmann B, Goumenou M et al (2013) Development of an adverse outcome pathway from drug-mediated bile salt export pump inhibition to cholestatic liver injury. Toxicol Sci 136:97–106

    Article  CAS  PubMed  Google Scholar 

  33. Rattner BA, Lazarus RS, Elliott JE et al (2014) Adverse outcome pathway and risks of anticoagulant rodenticides to predatory wildlife. Environ Sci Technol 48:8433–8445

    Article  CAS  PubMed  Google Scholar 

  34. Russom CL, LaLone CA, Villeneuve DL et al (2014) Development of an adverse outcome pathway for acetylcholinesterase inhibition leading to acute mortality. Environ Toxicol Chem 33:2157–2169

    Article  CAS  PubMed  Google Scholar 

  35. Wilbanks MS, Gust KA, Atwa S et al (2014) Validation of a genomics-based hypothetical adverse outcome pathway: 2,4-dinitrotoluene perturbs PPAR signaling thus impairing energy metabolism and exercise endurance. Toxicol Sci 141:44–58

    Article  CAS  PubMed  Google Scholar 

  36. Ankley GT, Villeneuve DL (2006) The fathead minnow in aquatic toxicology: past, present and future. Aquat Toxicol 78:91–102

    Article  CAS  PubMed  Google Scholar 

  37. Celander MC, Goldstone JV, Denslow ND et al (2011) Species extrapolation for the 21st century. Environ Toxicol Chem 30:52–63

    Article  CAS  PubMed  Google Scholar 

  38. Norris DO, Carr JA (2013) Vertebrate endocrinology, 5th edn. Academic, Waltham, MA

    Google Scholar 

  39. Ankley GT, Jensen KM, Durhan EJ et al (2005) Effects of two fungicides with multiple modes of action on reproductive endocrine function in the fathead minnow (Pimephales promelas). Toxicol Sci 86:300–308

    Article  CAS  PubMed  Google Scholar 

  40. Skolness SY, Blanksma CA, Cavallin JE et al (2013) Propiconazole inhibits steriodogenesis and reproduction in the fathead minnow (Pimephales promelas). Toxicol Sci 132:284–297

    Article  CAS  PubMed  Google Scholar 

  41. Miller DH, Jensen KM, Villeneuve DL et al (2007) Linkage of biochemical responses to population-level effects: a case study with vitellogenin in the fathead minnow (Pimephales promelas). Environ Toxicol Chem 26:521–527

    Article  CAS  PubMed  Google Scholar 

  42. Crofton KM (2008) Thyroid disrupting chemicals: mechanisms and mixtures. Int J Androl 31:209–223

    Article  CAS  PubMed  Google Scholar 

  43. Paris MM, Laudet VV (2008) The history of a developmental stage: metamorphosis in chordates. Genesis 46:657–672

    Article  CAS  PubMed  Google Scholar 

  44. Brucker-Davis F (1998) Effects of environmental synthetic chemicals on thyroid function. Thyroid 8:827–856

    Article  CAS  PubMed  Google Scholar 

  45. Capen CC (1997) Mechanistic data and risk assessment of selected toxic end points of the thyroid gland. Toxicol Pathol 25:39–48

    Article  CAS  PubMed  Google Scholar 

  46. Hurley PM (1998) Mode of carcinogenic action of pesticides inducing thyroid follicular cell tumors in rodents. Environ Health Perspect 106:437–445

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Wolff J (1998) Perchlorate and the thyroid gland. Pharm Rev 50:89–105

    CAS  PubMed  Google Scholar 

  48. Van Sande J, Massart C, Beauwens R et al (2003) Anion selectivity by the sodium iodide symporter. Endocrinology 144:247–252

    Article  PubMed  Google Scholar 

  49. Oppenheimer JH, Bernstein G, Surks MI (1968) Increased thyroxine turnover and thyroidal function after stimulation of hepatocellular binding of thyroxine by phenobarbital. J Clin Invest 47:1399–1406

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. McClain RM, Levin AA, Posch R et al (1989) The effect of phenobarbital on the metabolism and excretion of thyroxine in rats. Toxicol Appl Pharmacol 99:216–228

    Article  CAS  PubMed  Google Scholar 

  51. Visser TJ, Kaptein E, Gijzel AL et al (1993) Glucuronidation of thyroid hormone by human bilirubin and phenol UDP-glucuronyltransferase isoenzymes. FEBS Lett 324:358–360

    Article  CAS  PubMed  Google Scholar 

  52. Hood A, Klaassen CD (2000) Differential effects of microsomal enzyme inducers on in vitro thyroxine (T(4)) and triiodothyronine (T(3)) glucuronidation. Toxicol Sci 55:78–84

    Article  CAS  PubMed  Google Scholar 

  53. Chiamolera MI, Wondisford FE (2009) Thyrotropin-releasing hormone and the thyroid hormone feedback mechanism. Endocrinology 150:1091–1096

    Article  CAS  PubMed  Google Scholar 

  54. Hill RN, Crisp TM, Hurley PM et al (1998) Risk assessment of thyroid follicular cell tumors. Environ Health Perspect 106:447–457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Zoeller RT (2007) Environmental chemicals impacting the thyroid: targets and consequences. Thyroid 17:811–817

    Article  CAS  PubMed  Google Scholar 

  56. Dodd MHI (1976) The biology of metamorphosis. In: Lofts B (ed) Physiology of amphibia. Academic, New York, NY, pp 467–599

    Chapter  Google Scholar 

  57. Leloup J, Buscaglia M (1977) La triiodothyronine, hormone de la metamorphose des amphibiens. C R Acad Sci 284:2261–2263

    CAS  Google Scholar 

  58. Power DM, Llewellyn L, Faustino M et al (2001) Thyroid hormones in growth and development of fish. Comp Biochem Physiol C Toxicol Pharmacol 130:447–459

    Article  CAS  PubMed  Google Scholar 

  59. Dickhoff WW, Folmar LC, Gorbman A (1978) Changes in plasma thyroxine during smoltification of coho salmon, Oncorhynchus kisutch. Gen Comp Endocrinol 36:229–232

    Article  CAS  PubMed  Google Scholar 

  60. Degitz SJ, Holcombe GW, Flynn KM et al (2005) Progress towards development of an amphibian-based thyroid screening assay using Xenopus laevis. Organismal and thyroidal responses to the model compounds 6-propylthiouracil, methimazole, and thyroxine. Toxicol Sci 87:353–364. doi:10.1093/toxsci/kfi246

    Article  CAS  PubMed  Google Scholar 

  61. International QSAR Foundation (2014) Effectopedia. http://www.effectopedia.org. Accessed 20 Jan 2015

  62. Perkins EJ (2014) AOP-Xplorer. http://aopxplorer.org. Accessed 20 Jan 2015

  63. United States Environmental Protection Agency (2014) Aggregated Computational Toxicology Resource (ACToR). http://actor.epa.gov. Accessed 15 Jan 2015

  64. European Chemicals Agency (2014) International Uniform Chemical Information Database (IUCLID) http://iuclid.eu. Accessed 20 Jan 2015

  65. Villeneuve DL, Larkin P, Knoebl I et al (2007) A graphical systems model to facilitate hypothesis-driven ecotoxicogenomics research on the teleost brain-pituitary-gonadal axis. Environ Sci Technol 41(1):321–330

    Article  CAS  PubMed  Google Scholar 

  66. Villeneuve D, Mueller ND, Martinović D et al (2009) Direct effects, compensation, and recovery in female fathead minnows exposed to a model aromatase inhibitor. Environ Health Perspect 117:624–631

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Ankley GT, Bencic D, Cavallin JE et al (2009) Dynamic nature of alterations in the endocrine system of fathead minnows exposed to the fungicide prochloraz. Toxicol Sci 112(2):344–353. doi:10.1093/toxsci/kfp227

    Article  CAS  PubMed  Google Scholar 

  68. Garcia-Reyero N, Escalon BL, Prats E et al (2014) Effects of BDE-209 contaminated sediments on zebrafish development and potential implications to human health. Environ Int 63:216–223

    Article  CAS  PubMed  Google Scholar 

  69. Garcia-Reyero N, Kennedy AJ, Escalon BL et al (2014) Differential effects and potential adverse outcomes of ionic silver and silver nanoparticles in vivo and in vitro. Environ Sci Technol 48:4546–4555

    Article  CAS  PubMed  Google Scholar 

  70. Hallén K, Björkegren J, Tegnér J (2006) Detection of compound mode of action by computational integration of whole-genome measurements and genetic perturbations. BMC Bioinformatics 7:51

    Article  PubMed Central  PubMed  Google Scholar 

  71. Wang R-L, Bencic D, Villeneuve DL et al (2010) A transcriptomics-based biological framework for studying mechanisms of endocrine disruption in small fish species. Aquat Toxicol 98:230–244

    Article  CAS  PubMed  Google Scholar 

  72. Warner CM, Gust KA, Stanley JK et al (2012) A systems toxicology approach to elucidate the mechanisms involved in RDX species-specific sensitivity. Environ Sci Technol 46:7790–7798

    Article  CAS  PubMed  Google Scholar 

  73. Basso K, Margolin AA, Stolovitzky G et al (2005) Reverse engineering of regulatory networks in human B cells. Nat Genet 37:382–390

    Article  CAS  PubMed  Google Scholar 

  74. Della Gatta G, Palomero T, Perez-Garcia A et al (2012) Reverse engineering of TLX oncogenic transcriptional networks identifies RUNX1 as tumor suppressor in T-ALL. Nat Med 18:436–440

    Article  CAS  PubMed  Google Scholar 

  75. Lingeman J (2012) Network inference in molecular biology. Springer, New York, NY, ISSN: 2191-8112

    Book  Google Scholar 

  76. Perkins EJ, Chipman JK, Edwards SW et al (2010) Reverse engineering adverse outcome pathways. Environ Toxicol Chem 30:22–38. doi:10.1002/etc.374

    Article  Google Scholar 

  77. Garcia-Reyero N, Ekman DR, Habib T et al (2014) Integrated approach to explore the mechanisms of aromatase inhibition and recovery in fathead minnows (Pimephales promelas). Gen Comp Endocrinol 203:193–202

    Article  CAS  PubMed  Google Scholar 

  78. Williams TD, Turan N, Diab AM et al (2011) Towards a system level understanding of non-model organisms sampled from the environment: a network biology approach. PLoS Comput Biol 7:e1002126. doi:10.1371/journal.pcbi.1002126.t004

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  79. Ideker T, Krogan NJ (2012) Differential network biology. Mol Syst Biol 8:1–9

    Article  Google Scholar 

  80. Zoppoli P, Morganella S, Ceccarelli M (2010) TimeDelay-ARACNE: Reverse engineering of gene networks from time-course data by an information theoretic approach. BMC Bioinformatics 11:154

    Article  PubMed Central  PubMed  Google Scholar 

  81. Greenfield A, Madar A, Ostrer H et al (2010) DREAM4: combining genetic and dynamic information to identify biological networks and dynamical models. PLoS One 5:e13397

    Article  PubMed Central  PubMed  Google Scholar 

  82. Madar A, Greenfield A, Vanden-Eijnden E et al (2010) DREAM3: network inference using dynamic context likelihood of relatedness and the inferelator. PLoS One 5:e9803

    Article  PubMed Central  PubMed  Google Scholar 

  83. Yu J, Smith VA, Wang PP et al (2004) Advances to Bayesian network inference for generating causal networks from observational biological data. Bioinformatics 20:3594–3603

    Article  CAS  PubMed  Google Scholar 

  84. Mitra K, Carvunis AR, Ramesh SK et al (2013) Integrative approaches for finding modular structure in biological networks. Nat Rev Genet 14:719–732

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  85. Zhang Q, Bhattacharya S, Conolly RB et al (2014) Molecular signaling network motifs provide a mechanistic basis for cellular threshold responses. Environ Health Perspect 122:1261–1270

    PubMed Central  CAS  PubMed  Google Scholar 

  86. Ryan CJ, Roguev A, Patrick K et al (2012) Hierarchical modularity and the evolution of genetic interactomes across species. Mol Cell 46:691–704

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  87. Tollefsen KE, Scholz S, Cronin MT et al (2014) Applying Adverse Outcome Pathways (AOPs) to support Integrated Approaches to Testing and Assessment (IATA). Regul Toxicol Pharmacol. doi:10.1016/j.yrtph.2014.09.009, Epub ahead of print

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Perkins .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Perkins, E. et al. (2015). The Adverse Outcome Pathway: A Conceptual Framework to Support Toxicity Testing in the Twenty-First Century. In: Hoeng, J., Peitsch, M. (eds) Computational Systems Toxicology. Methods in Pharmacology and Toxicology. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2778-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2778-4_1

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2777-7

  • Online ISBN: 978-1-4939-2778-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics