Skip to main content

Preparation of Short 5′-Triphosphorylated Oligoribonucleotides for Crystallographic and Biochemical Studies

  • Protocol

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1320))

Abstract

RNA molecules participate in virtually all cellular processes ranging from transfer of hereditary information to gene expression control. In cells, many RNAs form specific interactions with proteins often using short nucleotide sequences for protein recognition. Biochemical and structural studies of such RNA–protein complexes demand preparation of short RNAs. Although short RNAs can be synthesized chemically, certain proteins require monophosphate or triphosphate moieties on the 5′ end of RNA. Given high cost of chemical triphosphorylation, broad application of such RNAs is impractical. In vitro transcription of RNA by DNA-dependent bacteriophage T7 RNA polymerase provides an alternative option to prepare short RNAs with different phosphorylation states as well as modifications on the 5′ terminus. Here we outline the in vitro transcription methodology employed to prepare ≤5-mer oligoribonucleotide for structural and biochemical applications. The chapter describes the principles of construct design, in vitro transcription and RNA purification applied for characterization of a protein that targets the 5′ end of RNA.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Baltz AG, Munschauer M, Schwanhäusser B et al (2012) The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell 46:674–690

    Article  CAS  PubMed  Google Scholar 

  2. Castello A, Fischer B, Eichelbaum K et al (2012) Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell 149:1393–1406

    Article  CAS  PubMed  Google Scholar 

  3. Serganov A, Patel DJ (2008) Towards deciphering the principles underlying an mRNA recognition code. Curr Opin Struct Biol 18:120–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Ma J-B, Yuan Y-R, Meister G et al (2005) Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434:666–670

    Article  CAS  PubMed  Google Scholar 

  5. Wang Y, Ludwig J, Schuberth C et al (2010) Structural and functional insights into 5′-ppp RNA pattern recognition by the innate immune receptor RIG-I. Nat Struct Mol Biol 17:781–787

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Kowalinski E, Lunardi T, McCarthy AA et al (2011) Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 147:423–435

    Article  CAS  PubMed  Google Scholar 

  7. Abbas YM, Pichlmair A, Górna MW et al (2013) Structural basis for viral 5′-PPP-RNA recognition by human IFIT proteins. Nature 494:60–64

    Article  CAS  PubMed  Google Scholar 

  8. Deana A, Celesnik H, Belasco JG (2008) The bacterial enzyme RppH triggers messenger RNA degradation by 5′ pyrophosphate removal. Nature 451:355–358

    Article  CAS  PubMed  Google Scholar 

  9. Milligan JF, Groebe DR, Witherell GW et al (1987) Oligoribonucleotide synthesis using T7 RNA polymerase and synthetic DNA templates. Nucleic Acids Res 15:8783–8798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Moroney SE, Piccirilli JA (1991) Abortive products as initiating nucleotides during transcription by T7 RNA polymerase. Biochemistry 30:10343–10349

    Article  CAS  PubMed  Google Scholar 

  11. Kuzmine I, Martin CT (2001) Pre-steady-state kinetics of initiation of transcription by T7 RNA polymerase: a new kinetic model. J Mol Biol 305:559–566

    Article  CAS  PubMed  Google Scholar 

  12. Martin CT, Muller DK, Coleman JE (1988) Processivity in early stages of transcription by T7 RNA polymerase. Biochemistry 27:3966–3974

    Article  CAS  PubMed  Google Scholar 

  13. Rong M, Durbin RK, McAllister WT (1998) Template strand switching by T7 RNA polymerase. J Biol Chem 273:10253–10260

    Article  CAS  PubMed  Google Scholar 

  14. Pleiss JA, Derrick ML, Uhlenbeck OC (1998) T7 RNA polymerase produces 5′ end heterogeneity during in vitro transcription from certain templates. RNA 4:1313–1317

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Helm M, Brulé H, Giegé R et al (1999) More mistakes by T7 RNA polymerase at the 5′ ends of in vitro-transcribed RNAs. RNA 5:618–621

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Nacheva GA, Berzal-Herranz A (2003) Preventing nondesired RNA-primed RNA extension catalyzed by T7 RNA polymerase. Eur J Biochem 270:1458–1465

    Article  CAS  PubMed  Google Scholar 

  17. Kao C, Zheng M, Rüdisser S (1999) A simple and efficient method to reduce nontemplated nucleotide addition at the 3′ terminus of RNAs transcribed by T7 RNA polymerase. RNA 5:1268–1272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Schenborn ET, Mierendorf RC (1985) A novel transcription property of SP6 and T7 RNA polymerases: dependence on template structure. Nucleic Acids Res 13:6223–6236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Price SR, Ito N, Oubridge C et al (1995) Crystallization of RNA-protein complexes. I. Methods for the large-scale preparation of RNA suitable for crystallographic studies. J Mol Biol 249:398–408

    Article  CAS  PubMed  Google Scholar 

  20. Fechter P, Rudinger J, Giegé R et al (1998) Ribozyme processed tRNA transcripts with unfriendly internal promoter for T7 RNA polymerase: production and activity. FEBS Lett 436:99–103

    Article  CAS  PubMed  Google Scholar 

  21. Schürer H, Lang K, Schuster J et al (2002) A universal method to produce in vitro transcripts with homogeneous 3′ ends. Nucleic Acids Res 30:e56

    Article  PubMed Central  PubMed  Google Scholar 

  22. Dunn JJ, Studier FW, Gottesman M (1983) Complete nucleotide sequence of bacteriophage T7 DNA and the locations of T7 genetic elements. J Mol Biol 166:477–535

    Article  CAS  PubMed  Google Scholar 

  23. Sambrook J, Fritch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  24. Studier FW, Rosenberg AH, Dunn JJ et al (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185:60–89

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Serganov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Vasilyev, N., Serganov, A. (2016). Preparation of Short 5′-Triphosphorylated Oligoribonucleotides for Crystallographic and Biochemical Studies. In: Ennifar, E. (eds) Nucleic Acid Crystallography. Methods in Molecular Biology, vol 1320. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2763-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2763-0_2

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2762-3

  • Online ISBN: 978-1-4939-2763-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics