Skip to main content

A High-Throughput RNA Interference (RNAi)-Based Approach Using Hairy Roots for the Study of Plant–Rhizobia Interactions

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1287))

Abstract

Legumes are major contributors to sustainable agriculture; their key feature is their ability to fix atmospheric nitrogen through symbiotic nitrogen fixation. Legumes are often recalcitrant to regeneration and transformation by Agrobacterium tumefaciens; however, A. rhizogenes-mediated root transformation and composite plant generation are rapid and convenient alternatives to study root biology, including root nodule symbiosis. RNA interference (RNAi), coupled with A. rhizogenes-mediated root transformation, has been very successfully used for analyses of gene function by reverse genetics. Besides being applied to model legumes (Medicago truncatula and Lotus japonicus), this method has been adopted for several other legumes due to the ease and relative speed with which transgenic roots can be generated. Several protocols for hairy root transformation have been published. Here we describe an improved hairy root transformation protocol and the methods to study nodulation in Medicago. We also highlight the major differences between our protocol and others, and key steps that need to be adjusted in order to translate this method to other legumes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Chilton MD et al (1982) Agrobacterium rhizogenes inserts T-DNA into the genomes of the host plant root cells. Nature 295:432

    Article  CAS  Google Scholar 

  2. Boisson-Dernier A et al (2001) Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. Mol Plant Microbe Interact 14:695

    Article  CAS  PubMed  Google Scholar 

  3. Mrosk C et al (2009) Composite Medicago truncatula plants harbouring Agrobacterium rhizogenes-transformed roots reveal normal mycorrhization by Glomus intraradices. J Exp Bot 60:3797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Stougaard J et al (1987) Expression of a complete soybean leghemoglobin gene in root nodules of transgenic Lotus corniculatus. Proc Natl Acad Sci U S A 84:5754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Huang G et al (2006) A root-knot nematode secretory peptide functions as a ligand for a plant transcription factor. Mol Plant Microbe Interact 19:463

    Article  CAS  PubMed  Google Scholar 

  6. Limpens E et al (2004) RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula. J Exp Bot 55:983

    Article  CAS  PubMed  Google Scholar 

  7. Bulgakov VP (2008) Functions of rol genes in plant secondary metabolism. Biotechnol Adv 26:318

    Article  CAS  PubMed  Google Scholar 

  8. Runo S et al (2012) Striga parasitizes transgenic hairy roots of Zea mays and provides a tool for studying plant-plant interactions. Plant Methods 8:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tepfer D (1984) Transformation of several species of higher plants by Agrobacterium rhizogenes: sexual transmission of the transformed genotype and phenotype. Cell 37:959

    Article  CAS  PubMed  Google Scholar 

  10. Iantcheva A et al (2013) Transformation of leguminous plants to study symbiotic interactions. Int J Dev Biol 57:577

    Article  CAS  PubMed  Google Scholar 

  11. Talano MA et al (2012) Hairy roots, their multiple applications and recent patents. Recent Pat Biotechnol 6:115

    Article  CAS  PubMed  Google Scholar 

  12. Nilsson O, Olsson O (1997) Getting to the root: the role of the Agrobacterium rhizogenes rol genes in the formation of hairy roots. Physiol Plant 100:463

    Article  CAS  Google Scholar 

  13. Pislariu CI et al (2015) Tobacco retrotransposon (Tnt1)-insertion mutagenesis in Medicago as a tool for genetic dissection of symbiosis in legumes. In: de Bruijn FJ (ed) The biological nitrogen fixation (in press)

    Google Scholar 

  14. Kumagai H, Kouchi H (2003) Gene silencing by expression of hairpin RNA in Lotus japonicus roots and root nodules. Mol Plant Microbe Interact 16:663

    Article  CAS  PubMed  Google Scholar 

  15. Floss DS et al (2013) Gene silencing in Medicago truncatula roots using RNAi. In: Rose RJ (ed) Legume genomics: methods and protocols, vol 1069, Methods in molecular biology. Springer, New York, p 163

    Chapter  Google Scholar 

  16. Collier R et al (2005) Ex vitro composite plants: an inexpensive, rapid method for root biology. Plant J 43:449

    Article  CAS  PubMed  Google Scholar 

  17. Deng Y et al (2011) Generation of composite plants in Medicago truncatula used for nodulation assays. J Vis Exp (49). pii: 2633. doi: 10.3791/2633

  18. Karimi M et al (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193

    Article  CAS  PubMed  Google Scholar 

  19. Wesley SV et al (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581

    Article  CAS  PubMed  Google Scholar 

  20. Hofgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16:9877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Díaz C et al (1989) Root lectin as a determinant of host-plant specificity in the Rhizobium-legume symbiosis. Nature 338:579

    Article  Google Scholar 

  22. Lee NG et al (1993) Expression of antisense nodulin-35 RNA in Vigna aconitifolia transgenic root nodules retards peroxisome development and affects nitrogen availability to the plant. Plant J 3:599

    Article  CAS  PubMed  Google Scholar 

  23. Diouf D et al (1995) Hairy root nodulation of Casuarina glauca: a system for the study of symbiotic gene expression in an actinorhizal tree. Mol Plant Microbe Interact 8:532

    Article  CAS  PubMed  Google Scholar 

  24. Cheon CI et al (1993) Roles of plant homologs of Rabi p and Rab7p in the biogenesis of the peribacteroid membrane, a subcellular compartment formed de novo during root nodule symbiosis. EMBO J 12:4125

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kereszt A et al (2007) Agrobacterium rhizogenes-mediated transformation of soybean to study root biology. Nat Protoc 2:948

    Article  CAS  PubMed  Google Scholar 

  26. Quandt HJ et al (1993) Transgenic root nodules of Vicia hirsuta. A fast and efficient system for the study of gene expression in indeterminate-type nodules. Mol Plant Microbe Interact 6:699

    Article  Google Scholar 

  27. Stiller J et al (1997) High frequency transformation and regeneration of transgenic plants in the model legume Lotus japonicus. J Exp Bot 48:1357

    Article  CAS  Google Scholar 

  28. Diaz CL et al (2000) Heterologous rhizobial lipochitin oligosaccharides and chitin oligomers induce cortical cell divisions in red clover roots, transformed with the pea lectin gene. Mol Plant Microbe Interact 13:268

    Article  CAS  PubMed  Google Scholar 

  29. Van-de-Velde W et al (2003) Agrobacterium rhizogenes-mediated transformation of Sesbania rostrata. Plant Sci 165:1281

    Article  CAS  Google Scholar 

  30. Estrada-Navarrete G et al (2006) Agrobacterium rhizogenes transformation of the Phaseolus spp.: a tool for functional genomics. Mol Plant Microbe Interact 19:1385

    Article  CAS  PubMed  Google Scholar 

  31. Estrada-Navarrete G et al (2007) Fast, efficient and reproducible genetic transformation of Phaseolus spp. by Agrobacterium rhizogenes. Nat Protoc 2:1819

    Article  CAS  PubMed  Google Scholar 

  32. Sinharoy S et al (2009) Transformed hairy roots of Arachis hypogea: a tool for studying root nodule symbiosis in a non-infection thread legume of the Aeschynomeneae tribe. Mol Plant Microbe Interact 22:132

    Article  CAS  PubMed  Google Scholar 

  33. Bonaldi K et al (2010) The Nod factor-independent symbiotic signaling pathway: development of Agrobacterium rhizogenes-mediated transformation for the legume Aeschynomene indica. Mol Plant Microbe Interact 23:1537

    Article  CAS  PubMed  Google Scholar 

  34. Clemow SR et al (2011) Reproducible hairy root transformation and spot-inoculation methods to study root symbioses of pea. Plant Methods 7:46

    Article  PubMed  PubMed Central  Google Scholar 

  35. Imanishi L et al (2011) Transformed hairy roots of Discaria trinervis: a valuable tool for studying actinorhizal symbiosis in the context of intercellular infection. Mol Plant Microbe Interact 24:1317

    Article  CAS  PubMed  Google Scholar 

  36. Mellor KE et al (2012) Use of ex vitro composite plants to study the interaction of cowpea (Vigna unguiculata L.) with the root parasitic angiosperm Striga gesnerioides. Plant Methods 8:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Journet EP et al (2001) Medicago truncatula ENOD11: a novel RPRP-encoding early nodulin gene expressed during mycorrhization in arbuscule-containing cells. Mol Plant Microbe Interact 14:737

    Article  CAS  PubMed  Google Scholar 

  38. Auriac MC, Timmers AC (2007) Nodulation studies in the model legume Medicago truncatula: advantages of using the constitutive EF1alpha promoter and limitations in detecting fluorescent reporter proteins in nodule tissues. Mol Plant Microbe Interact 20:1040

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation Plant Genome Research Program (Grant DBI-0703285) and The Samuel Roberts Noble Foundation. We thank Dr. Igor Kryvoruchko for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael K. Udvardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sinharoy, S., Pislariu, C.I., Udvardi, M.K. (2015). A High-Throughput RNA Interference (RNAi)-Based Approach Using Hairy Roots for the Study of Plant–Rhizobia Interactions. In: Mysore, K., Senthil-Kumar, M. (eds) Plant Gene Silencing. Methods in Molecular Biology, vol 1287. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2453-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2453-0_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2452-3

  • Online ISBN: 978-1-4939-2453-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics