Skip to main content

Assessment of Mitochondrial Protein Glutathionylation as Signaling for CO Pathway

  • Protocol
  • First Online:
Mitochondrial Medicine

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1264))

  • 6017 Accesses

Abstract

Protein glutathionylation is a posttranslational process that regulates protein function in response to redox cellular changes. Furthermore, carbon monoxide-induced cellular pathways involve reactive oxygen species (ROS) signaling and mitochondrial protein glutathionylation. Herein, it is described a technique to assess mitochondrial glutathionylation due to low concentrations of CO exposure. Mitochondria are isolated from cell culture or tissue, followed by an immunoprecipitation assay, which allows the capture of any glutathionylated mitochondrial protein using a specific antibody coupled to a solid matrix that binds to glutathione antigen. The precipitated protein is further identified and quantified by immunoblotting analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gallogly MM, Mieyal JJ (2007) Mechanisms of reversible protein glutathionylation in redox signaling and oxidative stress. Curr Opin Pharmacol 7(4):381–391

    Article  CAS  PubMed  Google Scholar 

  2. Mieyal JJ, Chock PB (2012) Posttranslational modification of cysteine in redox signaling and oxidative stress: focus on s-glutathionylation. Antioxid Redox Signal 16(6):471–475

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Mp M (2012) Mitochondrial thiols in antioxidant protection and redox signaling: distinct roles for glutathionylation and other thiol modifications. Antioxid Redox Signal 16(6):476–495

    Article  Google Scholar 

  4. Chen YR, Chen CL, Pfeiffer DR, Zweier JL (2007) Mitochondrial complex II in the post-ischemic heart. J Biol Chem 282(45):32640

    Article  CAS  PubMed  Google Scholar 

  5. Giangregorio N, Palmieri F, Indiveri C (2013) Glutathione controls the redox state of the mitochondrial carnitine/acylcarnitine carrier Cys residues by glutathionylation. Biochim Biophys Acta 1830:5299–5304

    Article  CAS  PubMed  Google Scholar 

  6. Kang PT, Zhang L, Chen C, Green-church KB, Chen R (2012) Protein thiyl radical mediates S-glutathionylation of complex I. Free Radic Biol Med 53(4):962–973

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Queiroga CSF, Almeida AS, Martel C, Brenner C, Alves PM, Vieira HLA (2010) Glutathionylation of adenine nucleotide translocase induced by carbon monoxide prevents mitochondrial membrane permeabilization and apoptosis. J Biol Chem 285(22):17077–17088

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Sun R, Eriksson S, Wang L (2012) Oxidative stress induced S-glutathionylation and proteolytic degradation of mitochondrial thymidine kinase 2. J Biol Chem 287(29):24304–24312

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Motterlini R, Otterbein LE (2010) The therapeutic potential of carbon monoxide. Nat Rev Drug Discov 9(9):728–743

    Article  CAS  PubMed  Google Scholar 

  10. Bilban M, Haschemi A, Wegiel B, Chin BY, Wagner O, Otterbein LE (2008) Heme oxygenase and carbon monoxide initiate homeostatic signaling. J Mol Med 86(3):267–279

    Article  CAS  PubMed  Google Scholar 

  11. Zuckerbraun BS, Chin BY, Bilban M et al (2007) Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species. FASEB J 21(4):1099–1106

    Article  CAS  PubMed  Google Scholar 

  12. Suliman HB, Carraway MS, Ali AS, Reynolds CM, Welty-wolf KE, Piantadosi CA (2007) The CO/HO system reverses inhibition of mitochondrial biogenesis and prevents murine doxorubicin cardiomyopathy. J Clin Invest 117(12):3730–3741

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Kim HS, Loughran PA, Billiar TR (2008) Carbon monoxide decreases the level of iNOS protein and active dimer in IL-1b-stimulated hepatocytes. Nitric Oxide 18:256–265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Vieira HLA, Queiroga CSF, Alves PM (2008) Pre-conditioning induced by carbon monoxide provides neuronal protection against apoptosis. J Neurochem 107(2):375–384

    Article  CAS  PubMed  Google Scholar 

  15. Scragg JL, Dallas ML, Wilkinson JA, Varadi G, Peers C (2008) Carbon monoxide inhibits L-type Ca2+ channels via redox modulation of key cysteine residues by mitochondrial reactive oxygen species. J Biol Chem 283(36):24412–24419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Taillé C, El-Benna J, Lanone S, Boczkowski J, Motterlini R (2005) Mitochondrial respiratory chain and NAD(P)H oxidase are targets for the antiproliferative effect of carbon monoxide in human airway smooth muscle. J Biol Chem 280(27):25350–25360

    Article  PubMed  Google Scholar 

  17. Costantini P, Chernyak BV, Petronilli V, Bernardi P (1996) Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J Biol Chem 271(12):6746–6751

    Article  CAS  PubMed  Google Scholar 

  18. Costantini P, Belzacq AS, Vieira HL et al (2000) Oxidation of a critical thiol residue of the adenine nucleotide translocator enforces Bcl-2-independent permeability transition pore opening and apoptosis. Oncogene 19(2):307–314

    Article  CAS  PubMed  Google Scholar 

  19. Vieira HLA, Boya P, Cohen I et al (2002) Cell permeable BH3-peptides overcome the cytoprotective effect of Bcl-2 and Bcl-X(L). Oncogene 21:1963–1977

    Article  CAS  PubMed  Google Scholar 

  20. Kristian T, Fiskum G (2004) A fluorescence-based technique for screening compounds that protect against damage to brain mitochondria. Brain Res Brain Res Protoc 13(3):176–182

    Article  CAS  PubMed  Google Scholar 

  21. Kristián T, Gertsch J, Bates TE, Siesjö BK (2000) Characteristics of the calcium-triggered mitochondrial permeability transition in nonsynaptic brain mitochondria: effect of cyclosporin A and ubiquinone O. J Neurochem 74(5):1999–2009

    Article  PubMed  Google Scholar 

  22. Sims NR (1990) Rapid isolation of metabolically active mitochondria from rat brain and subregions using Percoll density gradient centrifugation. J Neurochem 55(2):698–707

    Article  CAS  PubMed  Google Scholar 

  23. Motterlini R, Clark JE, Foresti R, Sarathchandra P, Mann BE, Green CJ (2002) Carbon monoxide-releasing molecules: characterization of biochemical and vascular activities. Circ Res 90(2):E17–E24

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Portuguese Fundação para a Ciência e a Tecnologia (FCT-ANR/NEU-NMC/0022/2012) and the Portuguese Fundação para a Ciência e a Tecnologia for ASA’s SFRH/BD/78440/2011 fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena L. A. Vieira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Almeida, A.S., Vieira, H.L.A. (2015). Assessment of Mitochondrial Protein Glutathionylation as Signaling for CO Pathway. In: Weissig, V., Edeas, M. (eds) Mitochondrial Medicine. Methods in Molecular Biology, vol 1264. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-2257-4_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-2257-4_30

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-2256-7

  • Online ISBN: 978-1-4939-2257-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics