Skip to main content

A Method Aimed at Assessing the Functional Consequences of the Supramolecular Organization of the Respiratory Electron Transfer Chain by Time-Resolved Studies

  • Protocol
  • First Online:
Mitochondrial Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1241))

Abstract

A steadily increasing number of physiological, biochemical, and structural studies have provided a growing support to the notion that the respiratory electron transfer chain may contain supra-molecular edifices made of the assembly of some, if not all, of its individual links. This structure, usually referred to as the solid state model—in comparison to the liquid state model in which the electron transfer reactions between the membrane bound enzymes are diffusion controlled—is seen as conferring specific kinetic properties to the chain and thus as being highly relevant from a functional point of view. Although the assumption that structural changes are mirrored by functional adjustment is undoubtedly legitimate, experimental evidences supporting it remain scarce. Here we review a recent methodological development aimed at tackling the functional relevance of the supramolecular organization of the respiratory electron transfer chain in intact cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Camb Philos Soc 41:445–502

    Article  PubMed  CAS  Google Scholar 

  2. Iwai M, Takizawa K, Tokutsu R, Okamuro A, Takahashi Y, Minagawa J (2010) Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature 464:1210–1213

    Article  PubMed  CAS  Google Scholar 

  3. Terashima M, Petroutsos D, Hudig M, Tolstygina I, Trompelt K, Gabelein P, Fufezan C, Kudla J, Weinl S, Finazzi G, Hippler M (2012) Calcium-dependent regulation of cyclic photosynthetic electron transfer by a CAS, ANR1, and PGRL1 complex. Proc Natl Acad Sci U S A 109:17717–17722

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Takahashi H, Clowez S, Wollman FA, Vallon O, Rappaport F (2013) Cyclic electron flow is redox-controlled but independent of state transition. Nat Commun 4:1954

    PubMed  PubMed Central  Google Scholar 

  5. Vermeglio A, Joliot P (1999) The photosynthetic apparatus of Rhodobacter sphaeroides. Trends Microbiol 7:435–440

    Article  PubMed  CAS  Google Scholar 

  6. Comayras F, Jungas C, Lavergne J (2005) Functional consequences of the organization of the photosynthetic apparatus in Rhodobacter sphaeroides. I. Quinone domains and excitation transfer in chromatophores and reaction center antenna complexes. J Biol Chem 280:11203–11213

    Article  PubMed  CAS  Google Scholar 

  7. Kirchhoff H (2008) Molecular crowding and order in photosynthetic membranes. Trends Plant Sci 13:201–207

    Article  PubMed  CAS  Google Scholar 

  8. Joliot P, Johnson GN (2011) Regulation of cyclic and linear electron flow in higher plants. Proc Natl Acad Sci U S A 108:13317–13322

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Lavergne J, Joliot P (1991) Restricted diffusion in photosynthetic membranes. Trends Biochem Sci 16:129–134

    Article  PubMed  CAS  Google Scholar 

  10. Lenaz G, Genova ML (2009) Mobility and function of coenzyme Q (ubiquinone) in the mitochondrial respiratory chain. Biochim Biophys Acta 1787:563–573

    Article  PubMed  CAS  Google Scholar 

  11. Genova ML, Lenaz G (2013) A critical appraisal of the role of respiratory supercomplexes in mitochondria. Biol Chem 394:631–639

    Article  PubMed  CAS  Google Scholar 

  12. Schagger H, Pfeiffer K (2000) Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19:1777–1783

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Schagger H (2002) Respiratory chain supercomplexes of mitochondria and bacteria. Biochim Biophys Acta 1555:154–159

    Article  PubMed  CAS  Google Scholar 

  14. Krause F, Reifschneider NH, Vocke D, Seelert H, Rexroth S, Dencher NA (2004) “Respirasome”-like supercomplexes in green leaf mitochondria of spinach. J Biol Chem 279:48369–48375

    Article  PubMed  CAS  Google Scholar 

  15. Dudkina NV, Heinemeyer J, Sunderhaus S, Boekema EJ, Braun HP (2006) Respiratory chain supercomplexes in the plant mitochondrial membrane. Trends Plant Sci 11:232–240

    Article  PubMed  CAS  Google Scholar 

  16. Wittig I, Carrozzo R, Santorelli FM, Schagger H (2006) Supercomplexes and subcomplexes of mitochondrial oxidative phosphorylation. Biochim Biophys Acta 1757:1066–1072

    Article  PubMed  CAS  Google Scholar 

  17. Acin-Perez R, Fernandez-Silva P, Peleato ML, Perez-Martos A, Enriquez JA (2008) Respiratory active mitochondrial supercomplexes. Mol Cell 32:529–539

    Article  PubMed  CAS  Google Scholar 

  18. Bultema JB, Braun HP, Boekema EJ, Kouril R (2009) Megacomplex organization of the oxidative phosphorylation system by structural analysis of respiratory supercomplexes from potato. Biochim Biophys Acta 1787:60–67

    Article  PubMed  CAS  Google Scholar 

  19. Dudkina NV, Kouril R, Peters K, Braun HP, Boekema EJ (2010) Structure and function of mitochondrial supercomplexes. Biochim Biophys Acta 1797:664–670

    Article  PubMed  CAS  Google Scholar 

  20. Althoff T, Mills DJ, Popot JL, Kuhlbrandt W (2011) Arrangement of electron transport chain components in bovine mitochondrial supercomplex I(1)III(2)IV(1). EMBO J 30(22):4652–4664

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Lapuente-Brun E, Moreno-Loshuertos R, Acin-Perez R, Latorre-Pellicer A, Colas C, Balsa E, Perales-Clemente E, Quiros PM, Calvo E, Rodriguez-Hernandez MA, Navas P, Cruz R, Carracedo A, Lopez-Otin C, Perez-Martos A, Fernandez-Silva P, Fernandez-Vizarra E, Enriquez JA (2013) Supercomplex assembly determines electron flux in the mitochondrial electron transport chain. Science 340:1567–1570

    Article  PubMed  CAS  Google Scholar 

  22. Grad LI, Lemire BD (2004) Mitochondrial complex I mutations in Caenorhabditis elegans produce cytochrome c oxidase deficiency, oxidative stress and vitamin-responsive lactic acidosis. Hum Mol Genet 13:303–314

    Article  PubMed  CAS  Google Scholar 

  23. D’Aurelio M, Gajewski CD, Lenaz G, Manfredi G (2006) Respiratory chain supercomplexes set the threshold for respiration defects in human mtDNA mutant cybrids. Hum Mol Genet 15:2157–2169

    Article  PubMed  Google Scholar 

  24. Lavergne J (2009) Clustering of electron transfer components: kinetic and thermodynamic consequences. In: Laisk A, Nedbal L, Govindjee (eds) Understanding complexity from molecules to ecosystems, vol 29. Springer, Dordrecht, pp 177–205

    Google Scholar 

  25. Frey TG, Mannella CA (2000) The internal structure of mitochondria. Trends Biochem Sci 25:319–324

    Article  PubMed  CAS  Google Scholar 

  26. Davies KM, Anselmi C, Wittig I, Faraldo-Gomez JD, Kuhlbrandt W (2012) Structure of the yeast F1Fo-ATP synthase dimer and its role in shaping the mitochondrial cristae. Proc Natl Acad Sci U S A 109:13602–13607

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Kirchhoff H, Hall C, Wood M, Herbstova M, Tsabari O, Nevo R, Charuvi D, Shimoni E, Reich Z (2011) Dynamic control of protein diffusion within the granal thylakoid lumen. Proc Natl Acad Sci U S A 108:20248–20253

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Boumans H, vanGaalen MCM, Grivell LA, Berden JA (1997) Differential inhibition of the yeast bc(1) complex by phenanthrolines and ferroin—implications for structure and catalytic mechanism. J Biol Chem 272:16753–16760

    Article  PubMed  CAS  Google Scholar 

  29. Boumans H, Grivell LA, Berden JA (1998) The respiratory chain in yeast behaves as a single functional unit. J Biol Chem 273:4872–4877

    Article  PubMed  CAS  Google Scholar 

  30. Bianchi C, Genova ML, Parenti Castelli G, Lenaz G (2004) The mitochondrial respiratory chain is partially organized in a supercomplex assembly: kinetic evidence using flux control analysis. J Biol Chem 279:36562–36569

    Article  PubMed  CAS  Google Scholar 

  31. Lenaz G, Genova ML (2007) Kinetics of integrated electron transfer in the mitochondrial respiratory chain: random collisions vs. solid state electron channeling. Am J Physiol Cell Physiol 292:C1221–C1239

    Article  PubMed  CAS  Google Scholar 

  32. Kaambre T, Chekulayev V, Shevchuk I, Karu-Varikmaa M, Timohhina N, Tepp K, Bogovskaja J, Kutner R, Valvere V, Saks V (2012) Metabolic control analysis of cellular respiration in situ in intraoperational samples of human breast cancer. J Bioenerg Biomembr 44:539–558

    Article  PubMed  CAS  Google Scholar 

  33. Kaambre T, Chekulayev V, Shevchuk I, Tepp K, Timohhina N, Varikmaa M, Bagur R, Klepinin A, Anmann T, Koit A, Kaldma A, Guzun R, Valvere V, Saks V (2013) Metabolic control analysis of respiration in human cancer tissue. Front Physiol 4:151

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hackenbrock CR, Chazotte B, Gupte SS (1986) The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport. J Bioenerg Biomembr 18:331–368

    Article  PubMed  CAS  Google Scholar 

  35. Trouillard M, Meunier B, Rappaport F (2011) Questioning the functional relevance of mitochondrial supercomplexes by time-resolved analysis of the respiratory chain. Proc Natl Acad Sci U S A 108:E1027–E1034

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Chance B (1954) Spectrophotometry of intracellular respiratory pigments. Science 120:767–775

    Article  PubMed  CAS  Google Scholar 

  37. Gibson QH, Greenwood C (1963) Reactions of cytochrome oxidase with oxygen and carbon monoxide. Biochem J 86:541–554

    PubMed  CAS  PubMed Central  Google Scholar 

  38. Babcock GT, Wikstrom M (1992) Oxygen activation and the conservation of energy in cell respiration. Nature 356:301–309

    Article  PubMed  CAS  Google Scholar 

  39. Einarsdottir O, Szundi I (2004) Time-resolved optical absorption studies of cytochrome oxidase dynamics. Biochim Biophys Acta 1655:263–273

    Article  PubMed  CAS  Google Scholar 

  40. Brzezinski P, Adelroth P (2006) Design principles of proton-pumping haem-copper oxidases. Curr Opin Struct Biol 16:465–472

    Article  PubMed  CAS  Google Scholar 

  41. Wikstrom M, Verkhovsky MI (2006) Towards the mechanism of proton pumping by the haem-copper oxidases. Biochim Biophys Acta 1757:1047–1051

    Article  PubMed  Google Scholar 

  42. Belevich I, Verkhovsky MI (2008) Molecular mechanism of proton translocation by cytochrome c oxidase. Antioxid Redox Signal 10:1–29

    Article  PubMed  CAS  Google Scholar 

  43. Brzezinski P, Gennis RB (2008) Cytochrome c oxidase: exciting progress and remaining mysteries. J Bioenerg Biomembr 40:521–531

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Kaila VR, Verkhovsky MI, Wikstrom M (2010) Proton-coupled electron transfer in cytochrome oxidase. Chem Rev 110:7062–7081

    Article  PubMed  CAS  Google Scholar 

  45. von Ballmoos C, Gennis RB, Adelroth P, Brzezinski P (2011) Kinetic design of the respiratory oxidases. Proc Natl Acad Sci U S A 108:11057–11062

    Article  Google Scholar 

  46. von Ballmoos C, Adelroth P, Gennis RB, Brzezinski P (2012) Proton transfer in ba(3) cytochrome c oxidase from Thermus thermophilus. Biochim Biophys Acta 1817:650–657

    Article  Google Scholar 

  47. Cooper CE, Brown GC (2008) The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J Bioenerg Biomembr 40:533–539

    Article  PubMed  CAS  Google Scholar 

  48. Beal D, Rappaport F, Joliot P (1999) A new high-sensitivity 10-ns time-resolution spectrophotometric technique adapted to in vivo analysis of the photosynthetic apparatus. Rev Sci Instrum 70:202–207

    Article  CAS  Google Scholar 

  49. Thomas BJ, Rothstein R (1989) Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630

    Article  PubMed  CAS  Google Scholar 

  50. Rigoulet M, Mourier A, Galinier A, Casteilla L, Devin A (2010) Electron competition process in respiratory chain: regulatory mechanisms and physiological functions. Biochim Biophys Acta 1797:671–677

    Article  PubMed  CAS  Google Scholar 

  51. Guerrero-Castillo S, Cabrera-Orefice A, Vazquez-Acevedo M, Gonzalez-Halphen D, Uribe-Carvajal S (2012) During the stationary growth phase, Yarrowia lipolytica prevents the overproduction of reactive oxygen species by activating an uncoupled mitochondrial respiratory pathway. Biochim Biophys Acta 1817:353–362

    Article  PubMed  CAS  Google Scholar 

  52. Oliveberg M, Brzezinski P, Malmstrom BG (1989) The effect of pH and temperature on the reaction of fully reduced and mixed-valence cytochrome c oxidase with dioxygen. Biochim Biophys Acta 977:322–328

    Article  PubMed  CAS  Google Scholar 

  53. Verkhovsky MI, Morgan JE, Wikstrom M (1994) Oxygen binding and activation: early steps in the reaction of oxygen with cytochrome c oxidase. Biochemistry 33:3079–3086

    Article  PubMed  CAS  Google Scholar 

  54. Brunori M, Giuffre A, Sarti P (2005) Cytochrome c oxidase, ligands and electrons. J Inorg Biochem 99:324–336

    Article  PubMed  CAS  Google Scholar 

  55. Farah J, Rappaport F, Choquet Y, Joliot P, Rochaix JD (1995) Isolation of a psaf-deficient mutant of Chlamydomonas reinhardtii: efficient interaction of plastocyanin with the photosystem I reaction center is mediated by the psaf subunit. EMBO J 14:4976–4984, 4971

    PubMed  CAS  PubMed Central  Google Scholar 

  56. Hippler M, Drepper F, Farah J, Rochaix JD (1997) Fast electron transfer from cytochrome c6 and plastocyanin to photosystem I of Chlamydomonas reinhardtii requires PsaF. Biochemistry 36:6343–6349

    Article  PubMed  CAS  Google Scholar 

  57. Hippler M, Drepper F (2006) Electron transfer between Photosystem I and plastocyanin or cytochrome c 6. In: Golbeck J (ed) Photosystem I: the light-driven plastocyanin ferredoxin oxidoreductase. Kluwer, Dordrecht, pp 499–513

    Chapter  Google Scholar 

  58. Santabarbara S, Redding KE, Rappaport F (2009) Temperature dependence of the reduction of P(700)(+) by tightly bound plastocyanin in vivo. Biochemistry 48:10457–10466

    Article  PubMed  CAS  Google Scholar 

  59. Hill BC (1991) The reaction of the electrostatic cytochrome c-cytochrome oxidase complex with oxygen. J Biol Chem 266:2219–2226

    PubMed  CAS  Google Scholar 

  60. Geren LM, Beasley JR, Fine BR, Saunders AJ, Hibdon S, Pielak GJ, Durham B, Millett F (1995) Design of a ruthenium-cytochrome c derivative to measure electron transfer to the initial acceptor in cytochrome c oxidase. J Biol Chem 270:2466–2472

    Article  PubMed  CAS  Google Scholar 

  61. Hirota S, Svensson-Ek M, Adelroth P, Sone N, Nilsson T, Malmstrom BG, Brzezinski P (1996) A flash-photolysis study of the reactions of a caa3-type cytochrome oxidase with dioxygen and carbon monoxide. J Bioenerg Biomembr 28:495–501

    Article  PubMed  CAS  Google Scholar 

  62. Brzezinski P, Wilson MT (1997) Photochemical electron injection into redox-active proteins. Proc Natl Acad Sci U S A 94:6176–6179

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  63. Sigurdson H, Namslauer A, Pereira MM, Teixeira M, Brzezinski P (2001) Ligand binding and the catalytic reaction of cytochrome caa(3) from the thermophilic bacterium Rhodothermus marinus. Biochemistry 40:10578–10585

    Article  PubMed  CAS  Google Scholar 

  64. Pesaresi P, Scharfenberg M, Weigel M, Granlund I, Schroder WP, Finazzi G, Rappaport F, Masiero S, Furini A, Jahns P, Leister D (2009) Mutants, overexpressors, and interactors of Arabidopsis plastocyanin isoforms: revised roles of plastocyanin in photosynthetic electron flow and thylakoid redox state. Mol Plant 2:236–248

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Warm acknowledgements are due to Daniel Béal and Martin Trouillard without whom the photo-activated respiratory electron transfer chain would have remained a project. This work was supported by CNRS, by the ANR (ANR-07-BLAN-0360-01), and by the “Initiative d’Excellence” program from the French State (Grant “DYNAMO”, ANR-11-LABX-0011-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Rappaport Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Rappaport, F. (2015). A Method Aimed at Assessing the Functional Consequences of the Supramolecular Organization of the Respiratory Electron Transfer Chain by Time-Resolved Studies. In: Palmeira, C., Rolo, A. (eds) Mitochondrial Regulation. Methods in Molecular Biology, vol 1241. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1875-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1875-1_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1874-4

  • Online ISBN: 978-1-4939-1875-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics