Skip to main content

Computer-Assisted Annotation of Small RNA Transcriptomes

  • Protocol
  • First Online:
Book cover RNA Interference

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1218))

Abstract

Small noncoding RNAs (sncRNAs) are widely expressed in the cell of almost all known species. Most sncRNAs appear to have regulatory roles, ranging from facilitating RNA production and modifications (e.g., snoRNAs) to control of mRNA stability and translational efficiency (e.g., miRNAs and endo-siRNA) and to transposon silencing (e.g., piRNAs). The affordability and efficiency of next-generation RNA deep sequencing (RNA-Seq) technologies have made sncRNA deep sequencing (sncRNA-Seq) analyses a routine in biomedical research. SncRNA-Seq analyses generate millions of reads and gigabytes of data; annotation of sncRNA-Seq data remains challenging due to a lack of comprehensive sncRNA annotation pipelines. To solve this problem, we have developed a computer-assisted sncRNA annotation pipeline, which uses open-source software and allows for not only proper classification of known sncRNAs, but also discovery of novel sncRNA species. In this chapter, we describe our sncRNA annotation protocol in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pfeffer S, Zavolan M, Grasser FA, Chien M, Russo JJ, Ju J, John B, Enright AJ, Marks D, Sander C, Tuschl T (2004) Identification of virus-encoded microRNAs. Science 304: 734–736. doi:10.1126/science.1096781

    Article  PubMed  CAS  Google Scholar 

  2. Bourc’his D, Voinnet O (2010) A small-RNA perspective on gametogenesis, fertilization, and early zygotic development. Science 330: 617–622. doi:10.1126/science.1194776

    Article  PubMed  Google Scholar 

  3. Czech B, Hannon GJ (2011) Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet 12:19–31. doi:10.1038/nrg2916

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Eddy SR (2001) Non-coding RNA genes and the modern RNA world. Nat Rev Genet 2:919–929

    Article  PubMed  CAS  Google Scholar 

  5. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    Article  PubMed  CAS  Google Scholar 

  6. Siomi H, Siomi MC (2009) On the road to reading the RNA-interference code. Nature 457:396–404

    Article  PubMed  CAS  Google Scholar 

  7. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355. doi:10.1038/nature02871nature02871 [pii]

    Article  PubMed  CAS  Google Scholar 

  8. Ro S, Ma HY, Park C, Ortogero N, Song R, Hennig GW, Zheng H, Lin YM, Moro L, Hsieh JT, Yan W (2013) The mitochondrial genome encodes abundant small noncoding RNAs. Cell Res 23:759–774. doi:10.1038/cr.2013.37

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Smith CM, Steitz JA (1997) Sno storm in the nucleolus: new roles for myriad small RNPs. Cell 89:669–672

    Article  PubMed  CAS  Google Scholar 

  10. Ganot P, Bortolin ML, Kiss T (1997) Site-specific pseudouridine formation in preribosomal RNA is guided by small nucleolar RNAs. Cell 89:799–809

    Article  PubMed  CAS  Google Scholar 

  11. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  PubMed  CAS  Google Scholar 

  12. Lai EC (2002) Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet 30:363–364. doi:10.1038/ng865

    Article  PubMed  CAS  Google Scholar 

  13. Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255–264. doi:10.1016/j.ygeno.2008.07.001

    Article  PubMed  CAS  Google Scholar 

  14. Kozomara A, Griffiths-Jones S (2013) miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res 39:D152–D157. doi:10.1093/nar/gkt1181

  15. Kozomara A, Griffiths-Jones S (2011) miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res 39:D152–D157. doi:10.1093/nar/gkq1027

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Ortogero N, Hennig GW, Langille C, Ro S, McCarrey JR, Yan W (2013) Computer-assisted annotation of murine sertoli cell small RNA transcriptome. Biol Reprod 88:3. doi:10.1095/biolreprod.112.102269

    Article  PubMed  Google Scholar 

  17. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMB J 17:10–12

    Article  Google Scholar 

  18. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25. doi:10.1186/gb-2009-10-3-r25

    Article  PubMed  PubMed Central  Google Scholar 

  19. Chen X, Fau-Li Q, Li Q, Fau-Wang J, Wang J, Fau-Guo X, Guo X, Fau-Jiang X, Jiang X, Fau-Ren Z, Ren Z, Fau-Weng C, Weng C, Fau-Sun G, Sun G, Fau-Wang X, Wang X, Fau-Liu Y, Liu Y, Fau-Ma L, Ma L, Fau-Chen J.-Y, Chen Jy Fau-Wang J, Wang J, Fau-Zen K, Zen K, Fau-Zhang J, Zhang J, Fau-Zhang C.-Y.C.Y. Z (2009) Identification and characterization of novel amphioxus microRNAs by Solexa sequencing. Genome Biol 10:17

    Google Scholar 

  20. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Hertel J, Hofacker IL, Stadler PF (2008) SnoReport: computational identification of snoRNAs with unknown targets. Bioinformatics 24:158–164. doi:10.1093/bioinformatics/ btm464

    Article  PubMed  CAS  Google Scholar 

  22. Chan PP, Lowe TM (2009) GtRNAdb: a database of transfer RNA genes detected in genomic sequence. Nucleic Acids Res 37:D93–D97. doi:10.1093/nar/gkn787

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by NIH grants (HD060858, HD071736, and HD074573) to W.Y. Software was developed in the Imaging Core (Core D) with support by the COBRE grant P20 RR-18751 from the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ortogero, N., Hennig, G.W., Luong, D., Yan, W. (2015). Computer-Assisted Annotation of Small RNA Transcriptomes. In: Sioud, M. (eds) RNA Interference. Methods in Molecular Biology, vol 1218. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-1538-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-1538-5_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-1537-8

  • Online ISBN: 978-1-4939-1538-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics