Skip to main content

Novel Bioreactor Platform for Scalable Cardiomyogenic Differentiation from Pluripotent Stem Cell-Derived Embryoid Bodies

  • Protocol
  • First Online:
Book cover Bioreactors in Stem Cell Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1502))

Abstract

Generation of cardiomyocytes from pluripotent stem cells (PSCs) is a common and valuable approach to produce large amount of cells for various applications, including assays and models for drug development, cell-based therapies, and tissue engineering. All these applications would benefit from a reliable bioreactor-based methodology to consistently generate homogenous PSC-derived embryoid bodies (EBs) at a large scale, which can further undergo cardiomyogenic differentiation. The goal of this chapter is to describe a scalable method to consistently generate large amount of homogeneous and synchronized EBs from PSCs. This method utilizes a slow-turning lateral vessel bioreactor to direct the EB formation and their subsequent cardiomyogenic lineage differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chong JJ, Yang X, Don CW, Minami E, Liu YW, Weyers JJ, Mahoney WM, Van Biber B, Cook SM, Palpant NJ, Gantz JA, Fugate JA, Muskheli V, Gough GM, Vogel KW, Astley CA, Hotchkiss CE, Baldessari A, Pabon L, Reinecke H, Gill EA, Nelson V, Kiem HP, Laflamme MA, Murry CE (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510(7504):273–277. doi:10.1038/nature13233

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Masumoto H, Ikuno T, Takeda M, Fukushima H, Marui A, Katayama S, Shimizu T, Ikeda T, Okano T, Sakata R, Yamashita JK (2014) Human iPS cell-engineered cardiac tissue sheets with cardiomyocytes and vascular cells for cardiac regeneration. Sci Rep 4:6716. doi:10.1038/srep06716

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kempf H, Kropp C, Olmer R, Martin U, Zweigerdt R (2015) Cardiac differentiation of human pluripotent stem cells in scalable suspension culture. Nat Protoc 10(9):1345–1361. doi:10.1038/nprot.2015.089

    Article  PubMed  CAS  Google Scholar 

  4. Höpfl G, Gassmann M, Desbaillets I (2004) Differentiating embryonic stem cells into embryoid bodies. Methods Mol Biol 254:79–98. doi:10.1385/1-59259-741-6:079

    PubMed  Google Scholar 

  5. Chen M, Lin YQ, Xie SL, Wu HF, Wang JF (2011) Enrichment of cardiac differentiation of mouse embryonic stem cells by optimizing the hanging drop method. Biotechnol Lett 33(4):853–858. doi:10.1007/s10529-010-0494-3

    Article  PubMed  CAS  Google Scholar 

  6. Rungarunlert S, Techakumphu M, Pirity MK, Dinnyes A (2009) Embryoid body formation from embryonic and induced pluripotent stem cells: Benefits of bioreactors. World J Stem Cells 1(1):11–21. doi:10.4252/wjsc.v1.i1.11

    Article  PubMed  PubMed Central  Google Scholar 

  7. Barzegari A, Saei AA (2012) An update to space biomedical research: tissue engineering in microgravity bioreactors. Bioimpacts 2(1):23–32. doi:10.5681/bi.2012.003

    PubMed  PubMed Central  Google Scholar 

  8. Pettinato G, Wen X, Zhang N (2015) Engineering strategies for the formation of embryoid bodies from human pluripotent stem cells. Stem Cells Dev 24(14):1595–1609. doi:10.1089/scd.2014.0427

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Rungarunlert S, Klincumhom N, Bock I, Nemes C, Techakumphu M, Pirity MK, Dinnyes A (2011) Enhanced cardiac differentiation of mouse embryonic stem cells by use of the slow-turning, lateral vessel (STLV) bioreactor. Biotechnol Lett 33(8):1565–1573. doi:10.1007/s10529-011-0614-8

    Article  PubMed  CAS  Google Scholar 

  10. Rungarunlert S, Klincumhom N, Tharasanit T, Techakumphu M, Pirity MK, Dinnyes A (2013) Slow turning lateral vessel bioreactor improves embryoid body formation and cardiogenic differentiation of mouse embryonic stem cells. Cell Reprogram 15(5):443–458. doi:10.1089/cell.2012.0082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Lü S, Liu S, He W, Duan C, Li Y, Liu Z, Zhang Y, Hao T, Wang Y, Li D, Wang C, Gao S (2008) Bioreactor cultivation enhances NTEB formation and differentiation of NTES cells into cardiomyocytes. Cloning Stem Cells 10(3):363–370. doi:10.1089/clo.2007.0093

    Article  PubMed  Google Scholar 

  12. Yirme G, Amit M, Laevsky I, Osenberg S, Itskovitz-Eldor J (2008) Establishing a dynamic process for the formation, propagation, and differentiation of human embryoid bodies. Stem Cells Dev 17(6):1227–1241. doi:10.1089/scd.2007.0272

    Article  PubMed  CAS  Google Scholar 

  13. Muenthaisong S, Ujhelly O, Polgar Z, Varga E, Ivics Z, Pirity MK, Dinnyes A (2012) Generation of mouse induced pluripotent stem cells from different genetic backgrounds using Sleeping beauty transposon mediated gene transfer. Exp Cell Res 318(19):2482–2489. doi:10.1016/j.yexcr.2012.07.014

    Article  PubMed  CAS  Google Scholar 

  14. Mauritz C, Schwanke K, Reppel M, Neef S, Katsirntaki K, Maier LS, Nguemo F, Menke S, Haustein M, Hescheler J, Hasenfuss G, Martin U (2008) Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 118(5):507–517. doi:10.1161/CIRCULATIONAHA.108.778795

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The research that supports these methodologies was funded by grants from the EU FP7 (“PartnErS” PIAP-GA-2008-218205; “AniStem,” PIAP-GA-2011286264; “EpiHealth,” HEALTH-2012-F2-278418; “EpiHealthNet,” PITN-GA-2012-317146, “STEMMAD,” PIAPP-GA-2012-324451) Research Center of Excellence 9878/2015/FEKUT project, the Mahidol University, the Thailand Research Fund (TRF), the Office of Higher Education Commission, Thailand (OHEC), and the Mahidol University (MRG 5680108).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasitorn Rungarunlert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rungarunlert, S., Ferreira, J.N., Dinnyes, A. (2016). Novel Bioreactor Platform for Scalable Cardiomyogenic Differentiation from Pluripotent Stem Cell-Derived Embryoid Bodies. In: Turksen, K. (eds) Bioreactors in Stem Cell Biology. Methods in Molecular Biology, vol 1502. Humana Press, New York, NY. https://doi.org/10.1007/7651_2016_341

Download citation

  • DOI: https://doi.org/10.1007/7651_2016_341

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6476-5

  • Online ISBN: 978-1-4939-6478-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics