Skip to main content

Artificial Riboswitch Selection: A FACS-Based Approach

  • Protocol
  • First Online:
Book cover Artificial Riboswitches

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1111))

Abstract

Riboswitches have a number of characteristics that make them ideal regulatory elements for a wide range of synthetic biology applications. To maximize their utility, methods are required to create custom riboswitches de novo or to modify existing riboswitches to suit specific experimental needs. This chapter describes such a method, which exploits fluorescence-activated cell sorting (FACS) to quickly and efficiently sort through large libraries of riboswitch-like sequences to identify those with the desired activity. Suggestions for the experimental setup are provided, along with detailed protocols for testing and optimizing FACS conditions FACS selection steps, and follow-up assays to identify and characterize individual riboswitches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roth A, Breaker RR (2009) The structural and functional diversity of metabolite-binding riboswitches. Annu Rev Biochem 78:305–334

    Article  CAS  PubMed  Google Scholar 

  2. Fowler CC, Brown ED, Li Y (2010) Using a riboswitch sensor to examine coenzyme B(12) metabolism and transport in E. coli. Chem Biol 17:756–765

    Article  CAS  PubMed  Google Scholar 

  3. Topp S, Gallivan JP (2007) Guiding bacteria with small molecules and RNA. J Am Chem Soc 129:6807–6811

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Blount KF, Breaker RR (2006) Riboswitches as antibacterial drug targets. Nat Biotechnol 24: 1558–1564

    Article  CAS  PubMed  Google Scholar 

  5. Sudarsan N, Hammond MC, Block KF et al (2006) Tandem riboswitch architectures exhibit complex gene control functions. Science 314:300–304

    Article  CAS  PubMed  Google Scholar 

  6. Jin Y, Watt RM, Danchin A, Huang J (2009) Use of a riboswitch-controlled conditional hypomorphic mutation to uncover a role for the essential csrA gene in bacterial autoaggregation. J Biol Chem 284:28738–28745

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Djordjevic M (2007) SELEX experiments: new prospects, applications and data analysis in inferring regulatory pathways. Biomol Eng 24: 179–189

    Article  CAS  PubMed  Google Scholar 

  8. Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX—a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24:381–403

    Article  CAS  PubMed  Google Scholar 

  9. Fowler CC, Brown ED, Li Y (2008) A FACS-based approach to engineering artificial riboswitches. ChemBioChem 9:1906–1911

    Article  CAS  PubMed  Google Scholar 

  10. Lynch SA, Gallivan JP (2009) A flow cytometry-based screen for synthetic riboswitches. Nucleic Acids Res 37:184–192

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Lynch SA, Desai SK, Sajja HK et al (2007) A high-throughput screen for synthetic riboswitches reveals mechanistic insights into their function. Chem Biol 14:173–184

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Topp S, Gallivan JP (2008) Random walks to synthetic riboswitches—a high-throughput selection based on cell motility. ChemBioChem 9:210–213

    Article  CAS  PubMed  Google Scholar 

  13. Muranaka N, Abe K, Yokobayashi Y (2009) Mechanism-guided library design and dual genetic selection of synthetic OFF riboswitches. ChemBioChem 10:2375–2381

    Article  CAS  PubMed  Google Scholar 

  14. Shapiro HM (2003) Practical flow cytometry, 4th edition. Wiley-Liss, New York, NY

    Google Scholar 

  15. Macey MG (2007) Flow cytometry: principles and applications. Humana Press, Totowa, NJ

    Book  Google Scholar 

  16. Wickiser JK, Winkler WC, Breaker RR et al (2005) The speed of RNA transcription and metabolite binding kinetics operate an FMN riboswitch. Mol Cell 18:49–60

    Article  CAS  PubMed  Google Scholar 

  17. Wickiser JK, Cheah MT, Breaker RR et al (2005) The kinetics of ligand binding by an adenine-sensing riboswitch. Biochemistry 44: 13404–13414

    Article  CAS  PubMed  Google Scholar 

  18. Gilbert SD, Stoddard CD, Wise SJ et al (2006) Thermodynamic and kinetic characterization of ligand binding to the purine riboswitch aptamer domain. J Mol Biol 359: 754–768

    Article  CAS  PubMed  Google Scholar 

  19. Trausch JJ, Ceres P, Reyes FE, Batey RT (2011) The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Structure 19: 1413–1423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Wachsmuth M, Findeiß S, Weissheimer N et al (2013) De novo design of a synthetic riboswitch that regulates transcription termination. Nucleic Acids Res 41:2541–2551

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Suess B, Fink B, Berens C et al (2004) A theophylline responsive riboswitch based on helix slipping controls gene expression in vivo. Nucleic Acids Res 32:1610–1614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Win MN, Smolke CD (2007) A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc Natl Acad Sci U S A 104:14283–14288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Wieland M, Hartig JS (2008) Improved aptazyme design and in vivo screening enable riboswitching in bacteria. Angew Chem Int Ed 47:2604–2607

    Article  CAS  Google Scholar 

  24. Ogawa A, Maeda M (2007) Aptazyme-based riboswitches as label-free and detector-free sensors for cofactors. Bioorg Med Chem Lett 17:3156–3160

    Article  CAS  PubMed  Google Scholar 

  25. Beisel CL, Smolke CD (2009) Design principles for riboswitch function. PLoS Comput Biol 5:e1000363

    Article  PubMed Central  PubMed  Google Scholar 

  26. Regulski EE, Breaker RR (2008) In-line probing analysis of riboswitches. Methods Mol Biol 419:53–67

    Article  CAS  PubMed  Google Scholar 

  27. Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544

    Article  CAS  PubMed  Google Scholar 

  28. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909

    Article  CAS  PubMed  Google Scholar 

  29. Telford WG, Hawley T, Subach F et al (2012) Flow cytometry of fluorescent proteins. Methods 57:318–330

    Article  CAS  PubMed  Google Scholar 

  30. Chudakov D, Matz M, Lukyanov S et al (2010) Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 90:1103–1163

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The riboswitch work in the Li Lab has been supported by the Natural Science and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ghazi, Z., Fowler, C.C., Li, Y. (2014). Artificial Riboswitch Selection: A FACS-Based Approach. In: Ogawa, A. (eds) Artificial Riboswitches. Methods in Molecular Biology, vol 1111. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-755-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-755-6_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-754-9

  • Online ISBN: 978-1-62703-755-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics