Skip to main content

In Vivo Screening for Aptazyme-Based Bacterial Riboswitches

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1111))

Abstract

In many synthetic biology applications, modular and easily accessible tools for controlling gene expression are required. In addition, in vivo biosensors and diagnostic devices will become more important in the future to allow for noninvasive determination of protein, ion, or small molecule metabolite levels. In recent years synthetic RNA-based switches have been developed to act as signal transducers to convert a binding event of a small molecule (input) into a detectable output. Their modular design allows the development of a variety of molecular switches to be used in biochemical assays or inside living cells. RNA switches developed by our group are based on the Schistosoma mansoni hammerhead ribozyme, a self-cleaving RNA sequence that can be inserted into any RNA of interest. Connection to an aptamer sensing a small molecule renders the cleavage reaction ligand-dependent. In the past we have successfully designed and applied such hammerhead aptazymes for the allosteric control of both bacterial and eukaryotic gene expression by affecting transcription elongation, translation initiation, or mRNA stability. In order to yield functional switches optimization of the connecting sequence between the aptamer and the HHR needs to be carried out. We have therefore developed an in vivo screening protocol detailed in this chapter that allows the identification of functional aptazymes in bacteria.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109:1948–1998

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510

    Article  CAS  PubMed  Google Scholar 

  3. Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822

    Article  CAS  PubMed  Google Scholar 

  4. Winkler W, Nahvi A, Breaker RR (2002) Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419:952–956

    Article  CAS  PubMed  Google Scholar 

  5. Winkler WC, Nahvi A, Sudarsan N, Barrick JE, Breaker RR (2003) An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nat Struct Biol 10:701–707

    Article  CAS  PubMed  Google Scholar 

  6. Mandal M, Boese B, Barrick JE, Winkler WC, Breaker RR (2003) Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113:577–586

    Article  CAS  PubMed  Google Scholar 

  7. Vinkenborg JL, Karnowski N, Famulok M (2011) Aptamers for allosteric regulation. Nat Chem Biol 7:519–527

    Article  CAS  PubMed  Google Scholar 

  8. Paige JS, Nguyen-Duc T, Song W, Jaffrey SR (2012) Fluorescence imaging of cellular metabolites with RNA. Science 335:1194

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Breaker RR (2002) Engineered allosteric ribozymes as biosensor components. Curr Opin Biotechnol 13:31–39

    Article  CAS  PubMed  Google Scholar 

  10. Blount KF, Uhlenbeck OC (2002) The hammerhead ribozyme. Biochem Soc Trans 30:1119–1122

    Article  CAS  PubMed  Google Scholar 

  11. Fedor MJ (2009) Comparative enzymology and structural biology of RNA self-cleavage. Annu Rev Biophys 38:271–299

    Article  CAS  PubMed  Google Scholar 

  12. Khvorova A, Lescoute A, Westhof E, Jayasena SD (2003) Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nat Struct Biol 10:708–712

    Article  CAS  PubMed  Google Scholar 

  13. Tang J, Breaker RR (1997) Rational design of allosteric ribozymes. Chem Biol 4:453–459

    Article  CAS  PubMed  Google Scholar 

  14. Wieland M, Hartig JS (2008) Improved aptazyme design and in vivo screening enable riboswitching in bacteria. Angew Chem 47:2604–2607

    Article  CAS  Google Scholar 

  15. Wieland M, Benz A, Klauser B, Hartig JS (2009) Artificial ribozyme switches containing natural riboswitch aptamer domains. Angew Chem 48:2715–2718

    Article  CAS  Google Scholar 

  16. Ogawa A, Maeda M (2008) An artificial aptazyme-based riboswitch and its cascading system in E. coli. Chembiochem 9:206–209

    Article  CAS  PubMed  Google Scholar 

  17. Win MN, Smolke CD (2007) A modular and extensible RNA-based gene-regulatory platform for engineering cellular function. Proc Natl Acad Sci U S A 104:14283–14288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Win MN, Smolke CD (2008) Higher-order cellular information processing with synthetic RNA devices. Science 322:456–460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Wieland M, Gfell M, Hartig JS (2009) Expanded hammerhead ribozymes containing addressable three-way junctions. RNA 15:968–976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Klauser B, Saragliadis A, Auslander S, Wieland M, Berthold MR, Hartig JS (2012) Post-transcriptional Boolean computation by combining aptazymes controlling mRNA translation initiation and tRNA activation. Mol BioSyst 8:2242–2248

    Article  CAS  PubMed  Google Scholar 

  21. Auslander S, Ketzer P, Hartig JS (2010) A ligand-dependent hammerhead ribozyme switch for controlling mammalian gene expression. Mol BioSyst 6:807–814

    Article  PubMed  Google Scholar 

  22. Ketzer P, Haas SF, Engelhardt S, Hartig JS, Nettelbeck DM (2012) Synthetic riboswitches for external regulation of genes transferred by replication-deficient and oncolytic adenoviruses. Nucleic Acids Res 40:e167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Berschneider B, Wieland M, Rubini M, Hartig JS (2009) Small-molecule-dependent regulation of transfer RNA in bacteria. Angew Chem 48:7564–7567

    Article  CAS  Google Scholar 

  24. Wieland M, Berschneider B, Erlacher MD, Hartig JS (2010) Aptazyme-mediated regulation of 16S ribosomal RNA. Chem Biol 17:236–242

    Article  CAS  PubMed  Google Scholar 

  25. Kumar D, Annna CI, Yokobayashi Y (2009) Conditional RNA interference mediated by allosteric ribozyme. J Am Chem Soc 131:13906–13907

    Article  CAS  PubMed  Google Scholar 

  26. Saragliadis A, Krajewski SS, Rehm C, Narberhaus F, Hartig JS (2013) Thermozymes: Synthetic RNA thermometers based on ribozyme activity. RNA Biol 10(6):1010–6

    Article  CAS  PubMed  Google Scholar 

  27. Klauser B, Hartig JS (2013) An engineered small RNA-mediated genetic switch based on a ribozyme expression platform. Nucleic Acids Res 41(10):5542–52

    Article  CAS  PubMed  Google Scholar 

  28. Soukup GA, Breaker RR (1999) Engineering precision RNA molecular switches. Proc Natl Acad Sci U S A 96:3584–3589

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Reetz MT, Kahakeaw D, Lohmer R (2008) Addressing the numbers problem in directed evolution. Chembiochem 9:1797–1804

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Rehm, C., Hartig, J.S. (2014). In Vivo Screening for Aptazyme-Based Bacterial Riboswitches. In: Ogawa, A. (eds) Artificial Riboswitches. Methods in Molecular Biology, vol 1111. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-755-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-755-6_17

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-754-9

  • Online ISBN: 978-1-62703-755-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics