Skip to main content

Toxicological Aspects for Nanomaterial in Humans

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 948))

Abstract

Among beneficial applications of nanotechnology, nanomedicine offers perhaps the greatest potential for improving human conditions and quality of life. Engineered nanomaterials (ENMs), with their unique properties, have potential to improve therapy of many human disorders. The properties that make ENMs so useful could also lead to unintentional adverse health effects. Challenges arising from physicochemical properties of ENMs, their characterization, exposure, and hazard assessment and other key issues of ENM safety are discussed. There is still scant knowledge about ENM cellular uptake, transport across biological barriers, distribution within the body, and possible mechanisms of toxicity. The safety of ENMs should be tested to minimize possible risk before the application. However, existing toxicity tests need to be adapted to fit to the unique features related to the nanosized material and appropriate controls and reference material should be considered.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Donaldson K, Stone V, Tran CL et al (2004) Nanotoxicology. Occup Environ Med 61:727–728

    Article  CAS  Google Scholar 

  2. Haynes CL (2010) The emerging field of nanotoxicology. Anal Bioanal Chem 398:587–588

    Article  CAS  Google Scholar 

  3. Maynard AD, Warheit DB, Philbert MA (2011) The new toxicology of sophisticated materials: nanotoxicology and beyond. Toxicol Sci 120(Suppl 1):S109–S129

    Article  CAS  Google Scholar 

  4. Kroll A, Pillukat MH, Hahn D et al (2009) Current in vitro methods in nanoparticle risk assessment: limitations and challenges. Eur J Pharm Biopharm 72:370–377

    Article  CAS  Google Scholar 

  5. Feliu N, Fadeel B (2010) Nanotoxicology: no small matter. Nanoscale 2:2514–2520

    Article  CAS  Google Scholar 

  6. Dusinska M, Fjellsbo L, Magdolenova Z et al (2009) Testing strategies for the safety of ­nanoparticles used in medical applications. Nanomedicine (Lond) 4:605–607

    Article  Google Scholar 

  7. EMEA (2006) Reflection Paper on Nanotechnology-Based Medicinal Products for Human Use, EMEA/CHMP/79769/2006. www.emea.europa.eu/pdfs/human/genetherapy/7976906en.pdf

  8. Gwinn MR, Tran L (2010) Risk management of nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2:130–137

    Article  CAS  Google Scholar 

  9. Stone V, Nowack B, Baun A et al (2010) Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterization. Sci Total Environ 408:1745–17454

    Article  CAS  Google Scholar 

  10. Bouwmeester H, Lynch I, Marvin HJP et al (2011) Minimal analytical characterisation of engineered nanomaterials needed for hazard assessment in biological matrices. Nanotoxicology 5:1–11

    Article  CAS  Google Scholar 

  11. Commitee ES (2011) Guidance on the risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain. EFSA Journal 9:2140–2176

    Google Scholar 

  12. Faraji AH, Wipf P (2009) Nanoparticles in cellular drug delivery. Bioorg Med Chem 17:2950–2962

    Article  CAS  Google Scholar 

  13. Warheit DB, Sayes CM, Reed KL et al (2008) Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks. Pharmacol Ther 120:35–42

    Article  CAS  Google Scholar 

  14. Kunzmann A, Andersson B, Thurnherr T et al (2011) Toxicology of engineered nanomaterials: focus on biocompatibility, biodistribution and biodegradation. Biochim Biophys Acta 1810:361–373

    Article  CAS  Google Scholar 

  15. Dhawan A, Sharma V (2010) Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 398:589–605

    Article  CAS  Google Scholar 

  16. Borm PJ, Muller-Schulte D (2006) Nanoparticles in drug delivery and environmental exposure: same size, same risks? Nanomedicine (Lond) 1:235–249

    Article  CAS  Google Scholar 

  17. Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging ­discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  CAS  Google Scholar 

  18. Adiseshaiah PP, Hall JB, McNeil SE (2009) Nanomaterial standards for efficacy and toxicity assessment. Nanotechnology 2:99–112

    Google Scholar 

  19. Goodman CM, McCusker CD, Yilmaz T et al (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15:897–900

    Article  CAS  Google Scholar 

  20. Kayat J, Gajbhiye V, Tekade RK et al (2011) Pulmonary toxicity of carbon nanotubes: a systematic report. Nanomedicine 7:40–49

    Article  CAS  Google Scholar 

  21. Nel A (2005) Atmosphere air pollution-related illness: effects of particles. Science 308:804

    Article  CAS  Google Scholar 

  22. Eom HJ, Choi J (2010) p38 MAPK activation, DNA damage, cell cycle arrest and apoptosis as mechanisms of toxicity of silver nanoparticles in Jurkat T cells. Environ Sci Technol 44:8337–8342

    Article  CAS  Google Scholar 

  23. Hsin YH, Chen CF, Huang S et al (2008) The apoptotic effect of nanosilver is mediated by a ROS- and JNK-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicol Lett 179:130–139

    Article  CAS  Google Scholar 

  24. Dailey LA, Jekel N, Fink L et al (2006) Investigation of proinflammatory potential of biodegradable nanoparticle drug delivery systems in the lung. Toxicol Appl Pharmacol 215:100–108

    Article  CAS  Google Scholar 

  25. Magdolenova Z, Dhawan A, Collins A, Stone V, Dusinska M Mechanisms of Genotoxicity. A Review of Recent in vitro and in vivo Studies with Engineered Nanoparticles. Nanotoxicology. Submitted

    Google Scholar 

  26. Stone V, Johnston H, Schins RP (2009) Development of in vitro systems for nanotoxicology: methodological considerations. Crit Rev Toxicol 39:613–626

    Article  CAS  Google Scholar 

  27. Singh N, Manshian B, Jenkins GJ et al (2009) NanoGenotoxicology: the DNA damaging potential of engineered nanomaterials. Biomaterials 30:3891–3914

    Article  CAS  Google Scholar 

  28. Liang XJ, Chen C, Zhao Y et al (2008) Biopharmaceutics and therapeutic potential of engineered nanomaterials. Curr Drug Metab 9:697–709

    Article  CAS  Google Scholar 

  29. Asharani PV, Low Kah Mun G, Hande MP et al (2009) Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 3:279–290

    Article  CAS  Google Scholar 

  30. Seaton A, Tran L, Aitken R et al (2010) Nanoparticles, human health hazard and ­regulation. J R Soc Interface 7(Suppl 1):S119–S129

    Article  CAS  Google Scholar 

  31. Simko M, Mattsson MO (2010) Risks from accidental exposures to engineered nanoparticles and neurological health effects: a critical review. Part Fibre Toxicol 7:42

    Article  CAS  Google Scholar 

  32. Oberdörster G, Maynard A, Donaldson K et al (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8

    Article  Google Scholar 

  33. Abbott A (2003) Cell culture: biology’s new dimension. Nature 424:870–872

    Article  CAS  Google Scholar 

  34. Byrne H. J., Lynch I., de Jong W. H. et al. (2010) Protocols for assessment of biological hazards of engineered nanoparticles. European network on the health and environmental impact of nanomaterials, pp 1–30, http://www.nanoimpactnet.eu/uploads/file/Reports_Publications/D1.7%20Protocols%20for%20Assessment%20Bio-Hazards%20in%20ENMs.pdf

  35. Priya BR, Byrne HJ (2008) Investigation of sodium dodecyl benzene sulphonate assisted dispersion and debundling of single wall ­carbon nanotubes. J Phys Chem C 112:332–337

    Article  CAS  Google Scholar 

  36. Liu F, Soares MJ, Audus KL (1997) Permeability properties of monolayers of the human ­trophoblast cell line BeWo. Am J Physiol 273:C1596–C1604

    CAS  Google Scholar 

  37. Ampasavate C, Chandorkar GA, Vande Velde DG et al (2002) Transport and metabolism of opioid peptides across BeWo cells, an in vitro model of the placental barrier. Int J Pharm 233:85–98

    Article  CAS  Google Scholar 

  38. Saunders M (2009) Transplacental transport of nanomaterials. Wiley Interdiscip Rev Nanomed Nanobiotechnol 1:671–684

    Article  CAS  Google Scholar 

  39. Brown J, Reading SJ, Jones S et al (2000) Critical evaluation of ECV304 as a human endothelial cell model defined by genetic analysis and functional responses: a comparison with the human bladder cancer derived epithelial cell line T24/83. Lab Invest 80:37–45

    Article  CAS  Google Scholar 

  40. Saovapakhiran A, D’Emanuele A, Attwood D et al (2009) Surface modification of PAMAM dendrimers modulates the mechanism of cellular internalization. Bioconjug Chem 20:693–701

    Article  CAS  Google Scholar 

  41. Herzog E, Casey A, Lyng FM et al (2007) A new approach to the toxicity testing of carbon-based nanomaterials-the clonogenic assay. Toxicol Lett 174:49–60

    Article  CAS  Google Scholar 

  42. Ng CT, Li JJ, Bay BH et al (2010) Current studies into the genotoxic effects of nanomaterials. J Nucleic Acids pii:947859

    Google Scholar 

  43. Mortelmans K, Zeiger E (2000) The Ames Salmonella/microsome mutagenicity assay. Mutat Res 455:29–60

    Article  CAS  Google Scholar 

  44. Landsiedel R, Kapp MD, Schulz M et al (2009) Genotoxicity investigations on nanomaterials: methods, preparation and characterization of test material, potential artifacts and limitations-many questions, some answers. Mutat Res 681:241–258

    Article  CAS  Google Scholar 

  45. Shinohara N, Matsumoto K, Endoh S et al (2009) In vitro and in vivo genotoxicity tests on fullerene C60 nanoparticles. Toxicol Lett 191:289–296

    Article  CAS  Google Scholar 

  46. Mori T, Takada H, Ito S et al (2006) Preclinical studies on safety of fullerene upon acute oral administration and evaluation for no mutagenesis. Toxicology 225:48–54

    Article  CAS  Google Scholar 

  47. Wirnitzer U, Herbold B, Voetz M et al (2009) Studies on the in vitro genotoxicity of baytubes, agglomerates of engineered multi-walled carbon-nanotubes (MWCNT). Toxicol Lett 186:160–165

    Article  CAS  Google Scholar 

  48. Di Sotto A, Chiaretti M, Carru GA et al (2009) Multi-walled carbon nanotubes: lack of mutagenic activity in the bacterial reverse mutation assay. Toxicol Lett 184:192–197

    Article  Google Scholar 

  49. Balasubramanyam A, Sailaja N, Mahboob M et al (2010) In vitro mutagenicity assessment of aluminium oxide nanomaterials using the Salmonella/microsome assay. Toxicol In Vitro 24:1871–1876

    Article  CAS  Google Scholar 

  50. Maenosono S, Suzuki T, Saita S (2007) Mutagenicity of water-soluble FePt nanoparticles in Ames test. J Toxicol Sci 32:575–579

    Article  CAS  Google Scholar 

  51. Maenosono S, Yoshida R, Saita S (2009) Evaluation of genotoxicity of amine-terminated water-dispersible FePt nanoparticles in the Ames test and in vitro chromosomal aberration test. J Toxicol Sci 34:349–354

    Article  CAS  Google Scholar 

  52. Yoshida R, Kitamura D, Maenosono S (2009) Mutagenicity of water-soluble ZnO nanoparticles in Ames test. J Toxicol Sci 34:119–122

    Article  CAS  Google Scholar 

  53. Collins AR, Dusinska M, Gedik CM et al (1996) Oxidative damage to DNA: do we have a reliable biomarker? Environ Health Perspect 104(Suppl 3):465–469

    Article  CAS  Google Scholar 

  54. Dusinska M, Collins AR (1996) Detection of oxidised purines and UV-induced photoproducts in DNA, by inclusion of lesion-specific enzymes in the comet assay (single cell gel electrophoresis). ATLA 24:405–411

    Google Scholar 

  55. Jha AN (2008) Ecotoxicological applications and significance of the comet assay. Mutagenesis 23:207–221

    Article  CAS  Google Scholar 

  56. O.E.C.D. (1997) Guidelines for testing chemicals. Mammalian erythrocyte micronucleus test. Vol. Guideline 474, Adopted: 21st July 1997, pp 1–10, http://www.oecd.org/chemicalsafety/assessmentofchemicals/1948442.pdf

  57. Fenech M (2007) Cytokinesis-block ­micronucleus cytome assay. Nat Protoc 2:1084–1104

    Article  CAS  Google Scholar 

  58. Laingam S, Froscio SM, Humpage AR (2008) Flow-cytometric analysis of in vitro micronucleus formation: comparative studies with WIL2-NS human lymphoblastoid and L5178Y mouse lymphoma cell lines. Mutat Res 656:19–26

    Article  CAS  Google Scholar 

  59. Fenech M, Kirsch-Volders M, Natarajan AT et al (2011) Molecular mechanisms of micronucleus, nucleoplasmic bridge and nuclear bud formation in mammalian and human cells. Mutagenesis 26:125–132

    Article  CAS  Google Scholar 

  60. Gonzalez L, Sanderson BJ, Kirsch-Volders M (2011) Adaptations of the in vitro MN assay for the genotoxicity assessment of nanomaterials. Mutagenesis 26:185–191

    Article  CAS  Google Scholar 

  61. Doak SH, Griffiths SM, Manshian B et al (2009) Confounding experimental considerations in nanogenotoxicology. Mutagenesis 24:285–293

    Article  CAS  Google Scholar 

  62. Hackenberg S, Scherzed A, Kessler M et al (2011) Silver nanoparticles: evaluation of DNA damage, toxicity and functional impairment in human mesenchymal stem cells. Toxicol Lett 201:27–33

    Article  CAS  Google Scholar 

  63. Galloway SM, Aardema MJ, Ishidate M Jr et al (1994) Report from working group on in vitro tests for chromosomal aberrations. Mutat Res 312:241–261

    Article  CAS  Google Scholar 

  64. Galloway SM, Armstrong MJ, Reuben C et al (1987) Chromosome aberrations and sister chromatid exchanges in Chinese hamster ovary cells: evaluations of 108 chemicals. Environ Mol Mutagen 10(Suppl 10):1–175

    Article  CAS  Google Scholar 

  65. Benigni R, Bossa C (2011) Alternative strategies for carcinogenicity assessment: an efficient and simplified approach based on in vitro mutagenicity and cell transformation assays. Mutagenesis 26:455–460

    Article  CAS  Google Scholar 

  66. Clift MJ, Gehr P, Rothen-Rutishauser B (2011) Nanotoxicology: a perspective and discussion of whether or not in vitro testing is a valid alternative. Arch Toxicol 85:723–731

    Article  CAS  Google Scholar 

  67. Fischer HC, Chan WC (2007) Nanotoxicity: the growing need for in vivo study. Curr Opin Biotechnol 18:565–571

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Supported by European Commission Seventh Framework Programme [Health-2007-1.3-4], Contract no: 201335, www.nanotest-fp7.eu

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Dusinska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dusinska, M., Magdolenova, Z., Fjellsbø, L.M. (2013). Toxicological Aspects for Nanomaterial in Humans. In: Ogris, M., Oupicky, D. (eds) Nanotechnology for Nucleic Acid Delivery. Methods in Molecular Biology, vol 948. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-140-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-140-0_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-139-4

  • Online ISBN: 978-1-62703-140-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics