Skip to main content

Multiscale Molecular Modeling

  • Protocol
  • First Online:
Book cover Biomolecular Simulations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 924))

Abstract

We review the basic theoretical principles of the adaptive resolution simulation scheme (AdResS). This method allows to change molecular resolution on-the-fly during a simulation by changing the number of degrees of freedom in specific regions of space where the required resolution is higher than in the rest of the system. We also report about recent extensions of the method to the continuum and quantum regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As defined by Eqs. 3 and 4, μkin(0)≠μ A kin. In fact, \({\mu }_{A}^{{kin}} = {\mu }^{{kin}}(0) + \phi {(0)}^{{kin}} = {\mu }_{B}^{{kin}}\). μkin(w) represents only the contribution of the switched-on DOFs to the kinetic part of chemical potential. The rest is included in φ(w)kin.

  2. 2.

    This is the value that one obtains by using the insertion methods in a hybrid system exclusively composed of hybrid molecules with a fixed level of resolution \(0 \leq w = w(x) = \mathrm{const}. \leq 1\) corresponding to a fixed bulk value μ w(x).

References

  1. Rafii-Tabar H, Hua L, Cross M (1998) A multi-scale atomistic-continuum modelling of crack propagation in a two-dimensional macroscopic plate. J Phys: Condens Matter 10:2375–2387

    Article  CAS  Google Scholar 

  2. Broughton JQ, Abraham FF, Bernstein N, Kaxiras E (1999) Concurrent coupling of length scales: methodology and application. Phys Rev B 60:2391–2403

    Article  CAS  Google Scholar 

  3. Hadjiconstantinou NG (1999) Combining atomistic and continuum simulations of contact-line motion. Phys Rev E 59:2475–2478

    Article  Google Scholar 

  4. Smirnova JA, Zhigilei LV, Garrison BJ (1999) A combined molecular dynamics and finite element method technique applied to laser induced pressure wave propagation. Comput Phys Commun 118:11–16

    Article  CAS  Google Scholar 

  5. Rottler J, Barsky S, Robbins MO (2002) Cracks and crazes: on calculating the macroscopic fracture energy of glassy polymers from molecular simulations. Phys Rev Lett 89:148304

    Article  PubMed  Google Scholar 

  6. Csanyi G, Albaret T, Payne MC, DeVita A (2004) ’Learn on the fly’: a hybrid classical and quantum-mechanical molecular dynamics simulation. Phys Rev Lett 93:175503

    Article  PubMed  Google Scholar 

  7. Heyden A, Lin H, Truhlar DG (2007) Adaptive partitioning in combined quantum mechanical and molecular mechanical calculations of potential energy functions for multiscale simulations. J Phys Chem B 111:2231–2241

    Article  PubMed  CAS  Google Scholar 

  8. Poma AB, Delle Site L (2010) Classical to path-integral adaptive resolution in molecular simulation: towards a smooth quantum-classical coupling. Phys Rev Lett 104:250201

    Article  PubMed  CAS  Google Scholar 

  9. Praprotnik M, Delle Site L, Kremer K (2005) Adaptive resolution molecular dynamics simulation: changing the degrees of freedom on the fly. J Chem Phys 123:224106

    Article  PubMed  Google Scholar 

  10. Delgado-Buscalioni R, Kremer K, Praprotnik M (2008) Concurrent triple-scale simulation of molecular liquids. J Chem Phys 128:114110

    Article  PubMed  Google Scholar 

  11. Praprotnik M, Delle Site L, Kremer K (2008) Multiscale simulation of soft matter: from scale bridging to adaptive resolution. Annu Rev Phys Chem 59:545–571

    Article  PubMed  CAS  Google Scholar 

  12. Poblete S, Praprotnik M, Delle Site L, Kremer K (2010) Coupling different levels of resolution in molecular simulations. J Chem Phys 132:114101

    Article  PubMed  Google Scholar 

  13. Praprotnik M, Delle Site L, Kremer K (2006) Adaptive resolution scheme (adress) for efficient hybrid atomistic/mesoscale molecular dynamics simulations of dense liquids. Phys Rev E 73:066701

    Article  Google Scholar 

  14. Praprotnik M, Matysiak S, Delle Site L, Kremer K, Clementi C (2007) Adaptive resolution simulation of liquid water. J Phys: Condens Matter 19:292201

    Article  Google Scholar 

  15. Delgado-Buscalioni R, Kremer K, Praprotnik M (2009) Coupling atomistic and continuum hydrodynamics through a mesoscopic model: application to liquid water. J Chem Phys 131:244107

    Article  PubMed  Google Scholar 

  16. Praprotnik M, Kremer K, Delle Site L (2007) Adaptive molecular resolution via a continuous change of the phase space dimensionality. Phys Rev E 75:017701

    Article  Google Scholar 

  17. Klapp SHL, Diestler DJ, Schoen M (2004) Why are effective potentials ‘soft’? J Phys: Condens Matter 16:7331–7352

    Article  CAS  Google Scholar 

  18. Nonnenmacher TF (1990) Fractional integral and differential equations for a class of Levi-type probability densities. J Phys A: Math Gen 23:L697S–L700S

    Article  Google Scholar 

  19. Hilfer R (ed) (2000) Applications of fractional calculus in physics. World Scientific Publishing, Co. Pte. Ltd, Singapore

    Google Scholar 

  20. Cotrill-Shepherd K, Naber M (2001) Fractional differential forms. J Math Phys 42:2203–2212

    Article  Google Scholar 

  21. Tarasov VE (2004) Fractional generalization of Liouville equations. Chaos 14:123–127

    Article  PubMed  Google Scholar 

  22. Tarasov VE (2005) Fractional systems and fractional Bogoliubov hierarchy equations. Phys Rev E 71:011102

    Article  Google Scholar 

  23. Praprotnik M, Kremer K, Delle Site L (2007) Fractional dimensions of phase space variables: a tool for varying the degrees of freedom of a system in a multiscale treatment. J Phys A: Math Theor 40:F281–F288

    Article  Google Scholar 

  24. Junghans C, Praprotnik M, Kremer K (2008) Transport properties controlled by a thermostat: an extended dissipative particle dynamics thermostat. Soft Matter 4:156–161

    Article  CAS  Google Scholar 

  25. Delle Site L (2007) Some fundamental problems for an energy-conserving adaptive-resolution molecular dynamics scheme. Phys Rev E 76:047701

    Article  Google Scholar 

  26. Janežič D, Praprotnik M, Merzel F (2005) Molecular dynamics integration and molecular vibrational theory: I. New symplectic integrators. J Chem Phys 122:174101

    Google Scholar 

  27. Soddemann T, Dünweg B, Kremer K (2003) Dissipative particle dynamics: a useful thermostat for equilibrium and nonequilibrium molecular dynamics simulations. Phys Rev E 68:046702

    Article  Google Scholar 

  28. Praprotnik M, Delle Site L, Kremer K (2007) A macromolecule in a solvent: adaptive resolution molecular dynamics simulation. J Chem Phys 126:134902

    Article  PubMed  Google Scholar 

  29. Matysiak S, Clementi C, Praprotnik M, Kremer K, Delle Site L (2008) Modeling diffusive dynamics in adaptive resolution simulation of liquid water. J Chem Phys 128:024503

    Article  PubMed  Google Scholar 

  30. Henderson RL (1974) A uniqueness theorem for fluid pair correlation functions. Phys Lett 49A:197–198

    Google Scholar 

  31. Soper AK (1996) Empirical monte carlo simulation of fluid structure. Chem Phys 202:295–306

    Article  CAS  Google Scholar 

  32. Tschöp W, Kremer K, Hahn O, Batoulis J, Bürger T (1998) Simulation of polymer melts. II. From coarse-grained models back to atomistic description. Acta Polym 49:75–79

    Google Scholar 

  33. Reith D, Pütz M, Müller-Plathe F (2003) Deriving effective mesoscale potentials from atomistic simulations. J Comput Chem 24:1624–1636

    Article  PubMed  CAS  Google Scholar 

  34. Lyubartsev AP, Laaksonen A (1995) Calculation of effective interaction potentials from radial distribution functions: a reverse monte carlo approach. Phys Rev E 52:3730–3737

    Article  CAS  Google Scholar 

  35. Izvekov S, Parrinello M, Burnham CB, Voth GA (2004) Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: a new method for force-matching. J Chem Phys 120:10896–10913

    Article  PubMed  CAS  Google Scholar 

  36. Izvekov S, Voth GA (2005) Multiscale coarse graining of liquid-state systems. J Chem Phys 123:134105

    Article  PubMed  Google Scholar 

  37. Mullinax JW, Noid WG (2009) Generalized yvon-born-green theory for molecular systems. Phys Rev Lett 103:198104

    Article  PubMed  CAS  Google Scholar 

  38. Mullinax JW, Noid WG (2009) Extended ensemble approach for deriving transferable coarse-grained potentials. J Chem Phys 131:104110

    Article  Google Scholar 

  39. Wang H, Junghans C, Kremer K (2009) Comparative atomistic and coarse-grained study of water: what do we lose by coarse-graining? Eur Phys J E 28:221

    Article  PubMed  Google Scholar 

  40. Espaňol P, Warren P (1995) Statistical mechanics of dissipative particle dynamics. Europhys Lett 30:191–196

    Google Scholar 

  41. Limbach HJ, Arnold A, Mann BA, Holm C (2006) Espresso—an extensible simulation package for research on soft matter systems. Comput Phys Comm 174:704–727 http://www.espresso.mpg.de

    Google Scholar 

  42. Junghans C, Poblete S (2010) A reference implementation of the adaptive resolution scheme in espresso. Comput Phys Comm 181:1449

    Article  CAS  Google Scholar 

  43. Fabritiis GD, Delgado-Buscalioni R, Coveney PV (2006) Multiscale modeling of liquids with molecular specificity. Phys Rev Lett 97:134501

    Article  PubMed  Google Scholar 

  44. Bulo R, Ensing B, Vischer L (2009) Toward a practial method for adaptive qm/mm simulations. J Chem Theor Comp 5:2212

    Article  CAS  Google Scholar 

  45. Tuckermann M (2002) Path integration via molecular dynamics. Quantum simulations of complex many-body systems: from theory to algorithms, NIC Series, John von Neumann Institute for Computing, pp 269–298

    Google Scholar 

  46. Bradley P. Lambeth, Christoph Junghans, Kurt Kremer, Cecilia Clementi, and Luigi Delle Site (2010): On the Locality of Hydrogen Bond Networks at Hydrophobic Interfaces J Chem Phys 133:221101

    Google Scholar 

Download references

Acknowledgements

Over the years we have collaborated with many colleagues and students on the topics described in this chapter. Out of them we would like to especially thank K. Kremer, R. Delgado-Buscalioni, C. Junghans, A. B. Poma, S. Poblete, C. Clementi, B. Lambeth, and S. Matysiak for fruitful collaboration and many discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luigi Delle Site .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Praprotnik, M., Site, L.D. (2013). Multiscale Molecular Modeling. In: Monticelli, L., Salonen, E. (eds) Biomolecular Simulations. Methods in Molecular Biology, vol 924. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-017-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-017-5_21

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-016-8

  • Online ISBN: 978-1-62703-017-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics