Skip to main content

Simulation of Carbohydrates, from Molecular Docking to Dynamics in Water

  • Protocol
  • First Online:
Book cover Biomolecular Simulations

Part of the book series: Methods in Molecular Biology ((MIMB,volume 924))

Abstract

Modeling of carbohydrates is particularly challenging because of the variety of structures resulting for the high number of monosaccharides and possible linkages and also because of their intrinsic flexibility. The development of carbohydrate parameters for molecular modeling is still an active field. Nowadays, main carbohydrates force fields are GLYCAM06, CHARMM36, and GROMOS 45A4. GLYCAM06 includes the largest choice of compounds and is compatible with the AMBER force fields and associated. Furthermore, AMBER includes tools for the implementation of new parameters.

When looking at protein–carbohydrate interaction, the choice of the starting structure is of importance. Such complex can be sometimes obtained from the Protein Data Bank—although the stereochemistry of sugars may require some corrections. When no experimental data is available, molecular docking simulation is generally used to the obtain protein–carbohydrate complex coordinates. As molecular docking parameters are not specifically dedicated to carbohydrates, inaccuracies should be expected, especially for the docking of polysaccharides. This issue can be addressed at least partially by combining molecular docking with molecular dynamics simulation in water.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CSD:

Cambridge structural database

MD:

Molecular dynamics

PDB:

Protein data bank

RESP:

Restricted electrostatic potential

References

  1. Fadda E, Woods RJ (2010) Molecular simulations of carbohydrates and protein-carbohydrate interactions: motivation, issues and prospects. Drug Discov Today 15:596–609

    Article  PubMed  CAS  Google Scholar 

  2. Spiwok V, Kralova B, Tvaroska I (2010) Modelling of beta-D-glucopyranose ring distortion in different force fields: a metadynamics study. Carbohydr Res 345:530–537

    Article  PubMed  CAS  Google Scholar 

  3. Imberty A, Pérez S (2000) Structure, conformation and dynamics of bioactive oligosaccharides: theoretical approaches and experimental validations. Chem Rev 100:4567–4588

    Article  PubMed  CAS  Google Scholar 

  4. Woods RJ, Tessier MB (2010) Computational glycoscience: characterizing the spatial and temporal properties of glycans and glycan-protein complexes. Curr Opin Struct Biol 20(5):575–583

    Article  PubMed  CAS  Google Scholar 

  5. Tvaroska I, Bleha T (1989) Anomeric an exo-anomeric effect in carbohydrate chemistry. Adv Carbohydr Chem Biochem 47:45–123

    Article  CAS  Google Scholar 

  6. Kirschner KN, Yongye AB, Tschampel SM, Gonzalez-Outeirino J, Daniels CR, Foley BL et al (2008) GLYCAM06: a generalizable biomolecular force field carbohydrates. J Comput Chem 29:622–655

    Article  PubMed  CAS  Google Scholar 

  7. Guvench O, Greene SN, Kamath G, Brady JW, Venable RM, Pastor RW et al (2008) Additive empirical force field for hexopyranose monosaccharides. J Comput Chem 29:2543–2564

    Article  PubMed  CAS  Google Scholar 

  8. Hatcher E, Guvench O, MacKerell AD (2009) CHARMM additive all-atom force field for aldopentofuranoses methyl-aldopentofuranosides, and fructofuranose. J Phys Chem B 113:12466–12476

    Article  PubMed  CAS  Google Scholar 

  9. Hatcher ER, Guvench O, MacKerell AD (2009) CHARMM additive all-atom force field for acyclic polyalcohols acyclic carbohydrates, and inositol. J Chem Theory Comput 5:1315–1327

    Article  PubMed  CAS  Google Scholar 

  10. Guvench O, Hatcher E, Venable RM, Pastor RW, MacKerell AD (2009) CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses. J Chem Theory Comput 5:2353–2370

    Article  PubMed  CAS  Google Scholar 

  11. Lins RD, Hunenberger PH (2005) A new GROMOS force field for hexopyranose-based carbohydrates. J Comput Chem 26:1400–1412

    Article  PubMed  CAS  Google Scholar 

  12. Wang J, Cieplak P, Kollman P (2000) How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J Comput Chem 21:1049–1074

    Article  CAS  Google Scholar 

  13. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W et al (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    Article  PubMed  CAS  Google Scholar 

  14. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins 65:712–725

    Article  PubMed  CAS  Google Scholar 

  15. Wang J, Wolf RM, Caldwell JW, Kollman PA, Case DA (2004) Development and testing of a general amber force field. J Comput Chem 25:1157–1174

    Article  PubMed  CAS  Google Scholar 

  16. Mackerell AD Jr, Feig M, Brooks CL 3rd (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25:1400–1415

    Article  PubMed  CAS  Google Scholar 

  17. MacKerell AD Jr, Feig M, Brooks CL 3rd (2004) Improved treatment of the protein backbone in empirical force fields. J Am Chem Soc 126:698–699

    Article  PubMed  CAS  Google Scholar 

  18. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  19. Reiher WEI (1985) Theoretical studies of hydrogen bonding. Department of Chemistry, Harvard University, Cambridge

    Google Scholar 

  20. Nurisso A, Kozmon S, Imberty A (2008) Comparison of docking methods for carbohydrate binding in calcium-dependent lectins and prediction of the carbohydrate binding mode to sea cucumber lectin CEL-III. Mol Simul 34:469–479

    Article  CAS  Google Scholar 

  21. DePaul AJ, Thompson EJ, Patel SS, Haldeman K, Sorin EJ (2010) Equilibrium conformational dynamics in an RNA tetraloop from massively parallel molecular dynamics. Nucleic Acids Res 38:4856–4867

    Article  PubMed  CAS  Google Scholar 

  22. Sorin EJ, Pande VS (2005) Exploring the helix-coil transition via all-atom equilibrium ensemble simulations. Biophys J 88:2472–2493

    Article  PubMed  CAS  Google Scholar 

  23. Case DA III, Cheatham TE, Darden T, Gohlke H, Luo R, Merz KM Jr et al (2005) The Amber biomolecular simulation programs. J Comput Chem 26:1668–1688

    Article  PubMed  CAS  Google Scholar 

  24. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26:1781–1802

    Article  PubMed  CAS  Google Scholar 

  25. Lutteke T (2009) Analysis and validation of carbohydrate three-dimensional structures. Acta Crystallogr D 65:156–168

    Article  PubMed  Google Scholar 

  26. Frank M, Lutteke T, von der Lieth C-W (2007) GlycoMapsDB: a database of the accessible conformational space of glycosidic linkages. Nucleic Acids Res 35:287–290

    Article  PubMed  CAS  Google Scholar 

  27. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14:27–38

    Google Scholar 

  28. Bayly CI, Cieplak P, Cornell W, Kollman PA (2002) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280

    Article  Google Scholar 

  29. Mulloy B, Forster MJ, Jones C, Davies DB (1993) N.m.r. and molecular-modelling studies of the solution conformation of heparin. Biochem J 293:849–858

    PubMed  CAS  Google Scholar 

  30. Gouin SG, Vanquelef E, Fernandez JM, Mellet CO, Dupradeau FY, Kovensky J (2007) Multi-mannosides based on a carbohydrate scaffold: synthesis, force field development, molecular dynamics studies, and binding affinities for lectin Con A. J Org Chem 72:9032–9045

    Article  PubMed  CAS  Google Scholar 

  31. Vanquelef E, Simon S, Marquant G, Garcia E, Klimerak G, Delepine JC, Cieplak P, Dupradeau FY (2011) R.E.D. Server: a web service for deriving RESP and ESP charges and building force field libraries for new molecules and molecular fragments. Nucleic Acids Res 39: W511–517

    Article  PubMed  CAS  Google Scholar 

  32. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N [center-dot] log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  33. Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG (1995) A smooth particle mesh Ewald method. J Chem Phys 103:8577–8593

    Article  CAS  Google Scholar 

  34. Peric-Hassler L, Hansen HS, Baron R, Hunenberger PH (2010) Conformational properties of glucose-based disaccharides investigated using molecular dynamics simulations with local elevation umbrella sampling. Carbohydr Res 345:1781–1801

    Article  PubMed  CAS  Google Scholar 

  35. Spiwok V, Tvaroska I (2009) Metadynamics modelling of the solvent effect on primary hydroxyl rotamer equilibria in hexopyranosides. Carbohydr Res 344:1575–1581

    Article  PubMed  CAS  Google Scholar 

  36. Cross S, Kuttel MM, Stone JE, Gain JE (2009) Visualisation of cyclic and multi-branched molecules with VMD. J Mol Graph Model 28:131–139

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Imberty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sapay, N., Nurisso, A., Imberty, A. (2013). Simulation of Carbohydrates, from Molecular Docking to Dynamics in Water. In: Monticelli, L., Salonen, E. (eds) Biomolecular Simulations. Methods in Molecular Biology, vol 924. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-017-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-017-5_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-016-8

  • Online ISBN: 978-1-62703-017-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics