Skip to main content

Carotenoids’ Production from Halophilic Bacteria

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 892))

Abstract

Carotenoids have received considerable attention due to their interesting industrial applications and, more importantly, their potential beneficial effects on human health. Halophiles comprise a heterogeneous group of microorganisms that need salts for optimal growth. The pigments produced by these halophilic organisms comprise phytoene, β-carotene, lycopene, derivatives of bacterioruberin, and salinixanthin. Here, we describe the procedure to obtain salinixanthin from the extremely halophilic bacterium Salinibacter ruber. Additionally, we describe the expression of the β-carotene biosynthetic genes crtE, crtY, crtI, and crtB from Pantoea agglomerans in the moderately halophilic bacterium Halomonas elongata obtaining a strain able to produce practically pure β-carotene. Thus, the use of these halophilic microorganisms as a source of carotenoids constitutes an important commercial alternative in the production of carotenoids from biological sources.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Ventosa A (2006) Unusual micro-organisms from unusual habitats: hypersaline environments. In: Logan NA, Lappin-Scott HM, Oyston PCF (eds) Prokaryotic diversity: mechanisms and significance. Cambridge University Press, Cambridge, pp 223–253

    Chapter  Google Scholar 

  2. Ventosa A, Nieto JJ (1995) Biotecnological applications and potentialities of halophilic microorganisms. World J Microbiol Biotecnol 11:85–94

    Article  CAS  Google Scholar 

  3. Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31:825–834

    Article  PubMed  CAS  Google Scholar 

  4. Borowitzka LJ, Borowitzka MA, Moulton T (1984) Mass culture of Dunaliella: from laboratory to pilot plant. Hydrobiology 117:115–121

    Article  Google Scholar 

  5. Hosseini TA, Shariati M (2010) Dunaliella biotechnology: methods and applications. J Appl Microbiol 107:14–35

    Article  Google Scholar 

  6. Ben-Amotz A (1999) Dunaliella β-carotene. From science to commerce. In: Seckbach J (ed) Enigmatig microorganisms and life in extreme environments. Kluwer Academic, Dordrecht, The Netherlands, pp 399–410

    Chapter  Google Scholar 

  7. Oren A, Rodríguez-Valera F (2001) The contribution of Salinibacter species to the red coloration of saltern crystallizar ponds. FEMS Microbiol Ecol 36:123–130

    PubMed  CAS  Google Scholar 

  8. Oren A (2009) Saline lakes around the world: unique systems with unique values. Nat Res Environ Issues 15:246–255

    Google Scholar 

  9. Tindall BJ (1992) The family Halobacteriaceae. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer KH (eds) The prokaryotes: a handbook on the biology of bacteria. Ecophysiology, isolation, identification and applications. Springer, New York, NY, pp 768–810

    Google Scholar 

  10. Dundas ID, Larsen H (1963) A study on the killing by light of photosensitized cells of Halobacterium salinarium. Arch Mikrobiol 46:19–28

    Article  PubMed  CAS  Google Scholar 

  11. Rodriguez-Valera F, Ventosa A, Juez G, Imhoff JF (1985) Variation of environmental features and microbial populations with salt concentrations in a multi-pond saltern. Microbiol Ecol 11:107–115

    Article  CAS  Google Scholar 

  12. Anton J, Oren A, Benlloch S, Rodriguez-Valera F, Amann R, Rossello-Mora R (2002) Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int J Syst Evol Microbiol 52:485–491

    PubMed  CAS  Google Scholar 

  13. Lutnaes BF, Strand A, Petursdottir SK, Liaaen-Jensen S (2004) Carotenoids of thermophilic bacteria Rhodothermus marinus from submarine Icelandic hot springs. Biochem Syst Ecol 32:455–468

    Article  CAS  Google Scholar 

  14. Asker D, Ohta Y (2002) Production of canthaxanthin by Haloferax alexandrinus under non-aseptic conditions and a simple, rapid method for its extraction. Appl Microbiol Biotechnol 6:743–750

    Google Scholar 

  15. Hanahan D (1983) Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580

    Article  PubMed  CAS  Google Scholar 

  16. Cunningham FX, Pogson B, Sun Z, McDonald KA, DellaPenna D, Gantt E (1996) Functional analysis of the beta and epsilon lycopene cyclase enzymes of Arabidopsis reveals a mechanism for control of cyclic carotenoid formation. Plant Cell 8:1613–1626

    PubMed  CAS  Google Scholar 

  17. Sun Z, Gantt E, Cunningham FX (1996) Cloning and functional analysis of the beta-carotene hydroxylase of Arabidopsis thaliana. J Biol Chem 271:24349–24352

    Article  PubMed  CAS  Google Scholar 

  18. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  PubMed  CAS  Google Scholar 

  19. Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci U S A 77:7347–7351

    Article  PubMed  CAS  Google Scholar 

  20. Mongodin EF, Nelson KE, Daugherty S, DeBoy RT, Wister J, Khouri H et al (2005) The genome of Salinibacter ruber: Convergence and gene exchange among hyperhalophilic bacteria and archaea. Proc Natl Acad Sci 102:18147–18152

    Article  PubMed  CAS  Google Scholar 

  21. Lutnaes BJ, Oren A, Liaaen-Jensen S (2002) New C40-carotenoid Acyl glycoside as principal carotenoid in Salinibacter ruber, an extremely halophilic eubacterium. J Nat Prod 65:1340–1343

    Article  PubMed  CAS  Google Scholar 

  22. Schiedt K, Liaaen-Jensen S (1995) Carotenoids. In: Britton G, Liaaen-Jensen S, Pfander H (ed) Birkhaüser, Basel, p 81–107

    Google Scholar 

  23. Calo P, de Miguel T, Sieiro C, Velazquez JB, Villa TG (1995) Ketocarotenoids in halobacteria: 3-hydroxy-echinenone and trans-astaxanthin. J Appl Microbiol 79:282–285

    Article  CAS  Google Scholar 

  24. Asker D, Ohta Y (1999) Production of Canthaxanthin by extremely halophilic bacteria. J Bios Bioeng 88:617–621

    Article  CAS  Google Scholar 

  25. Taylor RF, Davies BH (1983) The triterpenoid carotenoids and related terpenoids in Staphylococcus aureus 209P. Can J Biochem Cell Biol 91:892–905

    Article  Google Scholar 

  26. Rodríguez-Sáiz M, Paz B, de la Fuente JL, López-Nieto MJ, Cabri W, Barredo JL (2004) Genes for carotene biosynthesis from Blakeslea trispora. Appl Environ Microbiol 70:5589–5594

    Article  PubMed  Google Scholar 

  27. Rudakov OB, Perikova LI, Bolotov VM, Stashina GA (2004) Chromatographic determination of natural and artificial carotenoids in foodstuff. Vestn Beloruss Gos Univ Ser Khim Biol

    Google Scholar 

  28. Vargas C, Coronado MJ, Ventosa A, Nieto JJ (1997) Host range, stability, and compatibility of broad host-range plasmids and a shuttle vector in moderately halophilic bacteria. Evidence of intragenic and intergenic conjugation in moderate halophiles. Syst Appl Microbiol 20:173–181

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Encarnación Mellado .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

de Lourdes Moreno, M., Sánchez-Porro, C., García, M.T., Mellado, E. (2012). Carotenoids’ Production from Halophilic Bacteria. In: Barredo, JL. (eds) Microbial Carotenoids from Bacteria and Microalgae. Methods in Molecular Biology, vol 892. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-879-5_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-879-5_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-878-8

  • Online ISBN: 978-1-61779-879-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics