Skip to main content

Epigenetics in Myeloid Malignancies

  • Protocol
  • First Online:
Book cover Cancer Epigenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 863))

Abstract

Myeloid hematological malignancies are among the epigenetically best characterized neoplasms. The comparatively low number of recurring balanced and unbalanced chromosomal abnormalities as well as common genetic mutations has enabled scientists to relate epigenetic states to these. The ease of accessing malignant cells through bone marrow aspiration has certainly contributed to the fast expansion of knowledge. Even so, the clinical and pathogenetic relevance of epigenetic changes is still not known, and the field will certainly evolve very fast with the development of new analytic techniques. The first example of successful epigenetic therapy is seen in myeloid malignancies, in the high-risk myelodysplastic syndromes (MDS) which are routinely treated with the demethylating agent azacytidine.

This chapter will concentrate on describing the epigenetic changes in acute myeloid leukemia (AML), chronic myeloid leukemia (CML) and MDS. An overview of clinical relevance and epigenetic therapeutic approaches is also made.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Baylin, S. B., Fearon, E. R., Vogelstein, B., de Bustros, A., Sharkis, S. J., Burke, P. J., Staal, S. P., and Nelkin, B. D. (1987) Hypermethylation of the 5′ region of the calcitonin gene is a property of human lymphoid and acute myeloid malignancies, Blood 70, 412–417.

    PubMed  CAS  Google Scholar 

  2. Bacher, U., Haferlach, C., Schnittger, S., Kohlmann, A., Kern, W., and Haferlach, T. (2010) Mutations of the TET2 and CBL genes: novel molecular markers in myeloid malignancies, Ann Hematol 89, 643–652.

    Article  PubMed  CAS  Google Scholar 

  3. Lorsbach, R. B., Moore, J., Mathew, S., Raimondi, S. C., Mukatira, S. T., and Downing, J. R. (2003) TET1, a member of a novel protein family, is fused to MLL in acute myeloid leukemia containing the t(10;11)(q22;q23), Leukemia 17, 637–641.

    Article  PubMed  CAS  Google Scholar 

  4. Ko, M., Huang, Y., Jankowska, A. M., Pape, U. J., Tahiliani, M., Bandukwala, H. S., An, J., Lamperti, E. D., Koh, K. P., Ganetzky, R., Liu, X. S., Aravind, L., Agarwal, S., Maciejewski, J. P., and Rao, A. (2010) Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2, Nature 468, 839–843.

    Article  PubMed  CAS  Google Scholar 

  5. Figueroa, M. E., Abdel-Wahab, O., Lu, C., Ward, P. S., Patel, J., Shih, A., Li, Y., Bhagwat, N., Vasanthakumar, A., Fernandez, H. F., Tallman, M. S., Sun, Z., Wolniak, K., Peeters, J. K., Liu, W., Choe, S. E., Fantin, V. R., Paietta, E., Lowenberg, B., Licht, J. D., Godley, L. A., Delwel, R., Valk, P. J., Thompson, C. B., Levine, R. L., and Melnick, A. (2010) Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation, Cancer Cell 18, 553–567.

    Article  PubMed  CAS  Google Scholar 

  6. Ley, T. J., Ding, L., Walter, M. J., McLellan, M. D., Lamprecht, T., Larson, D. E., Kandoth, C., Payton, J. E., Baty, J., Welch, J., Harris, C. C., Lichti, C. F., Townsend, R. R., Fulton, R. S., Dooling, D. J., Koboldt, D. C., Schmidt, H., Zhang, Q., Osborne, J. R., Lin, L., O’Laughlin, M., McMichael, J. F., Delehaunty, K. D., McGrath, S. D., Fulton, L. A., Magrini, V. J., Vickery, T. L., Hundal, J., Cook, L. L., Conyers, J. J., Swift, G. W., Reed, J. P., Alldredge, P. A., Wylie, T., Walker, J., Kalicki, J., Watson, M. A., Heath, S., Shannon, W. D., Varghese, N., Nagarajan, R., Westervelt, P., Tomasson, M. H., Link, D. C., Graubert, T. A., DiPersio, J. F., Mardis, E. R., and Wilson, R. K. (2010) DNMT3A mutations in acute myeloid leukemia, N Engl J Med 363, 2424–2433.

    Article  PubMed  CAS  Google Scholar 

  7. Walker, H., Smith, F. J., and Betts, D. R. (1994) Cytogenetics in acute myeloid leukaemia, Blood Rev 8, 30–36.

    Article  PubMed  CAS  Google Scholar 

  8. Mrozek, K., Heerema, N. A., and Bloomfield, C. D. (2004) Cytogenetics in acute leukemia, Blood Rev 18, 115–136.

    Article  PubMed  Google Scholar 

  9. Grimwade, D., Walker, H., Oliver, F., Wheatley, K., Harrison, C., Harrison, G., Rees, J., Hann, I., Stevens, R., Burnett, A., and Goldstone, A. (1998) The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children’s Leukaemia Working Parties, Blood 92, 2322–2333.

    PubMed  CAS  Google Scholar 

  10. Dohner, K. and Dohner, H. (2008) Molecular characterization of acute myeloid leukemia, Haematologica 93, 976–982.

    Article  PubMed  CAS  Google Scholar 

  11. Sanz, M., Burnett, A., Lo-Coco, F., and Lowenberg, B. (2009) FLT3 inhibition as a targeted therapy for acute myeloid leukemia, Curr Opin Oncol 21, 594–600.

    Article  PubMed  CAS  Google Scholar 

  12. Christensen, B. C., Houseman, E. A., Marsit, C. J., Zheng, S., Wrensch, M. R., Wiemels, J. L., Nelson, H. H., Karagas, M. R., Padbury, J. F., Bueno, R., Sugarbaker, D. J., Yeh, R. F., Wiencke, J. K., and Kelsey, K. T. (2009) Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context, PLoS Genet 5, e1000602.

    Article  PubMed  CAS  Google Scholar 

  13. Ji, H., Ehrlich, L. I., Seita, J., Murakami, P., Doi, A., Lindau, P., Lee, H., Aryee, M. J., Irizarry, R. A., Kim, K., Rossi, D. J., Inlay, M. A., Serwold, T., Karsunky, H., Ho, L., Daley, G. Q., Weissman, I. L., and Feinberg, A. P. (2010) Comprehensive methylome map of lineage commitment from haematopoietic progenitors, Nature 467, 338–342.

    Article  PubMed  CAS  Google Scholar 

  14. Plass, C., Oakes, C., Blum, W., and Marcucci, G. (2008) Epigenetics in acute myeloid leukemia, Semin Oncol 35, 378–387.

    Article  PubMed  CAS  Google Scholar 

  15. Mahmud, M. and Stebbing, J. (2010) Epigenetic modifications in AML and MDS, Leuk Res 34, 139–140.

    Article  PubMed  Google Scholar 

  16. Deneberg, S., Grovdal, M., Karimi, M., Jansson, M., Nahi, H., Corbacioglu, A., Gaidzik, V., Dohner, K., Paul, C., Ekstrom, T. J., Hellstrom-Lindberg, E., and Lehmann, S. (2010) Gene-specific and global methylation patterns predict outcome in patients with acute myeloid leukemia, Leukemia 24, 932–941.

    Article  PubMed  CAS  Google Scholar 

  17. Figueroa, M. E., Lugthart, S., Li, Y., Erpelinck-Verschueren, C., Deng, X., Christos, P. J., Schifano, E., Booth, J., van Putten, W., Skrabanek, L., Campagne, F., Mazumdar, M., Greally, J. M., Valk, P. J., Lowenberg, B., Delwel, R., and Melnick, A. (2010) DNA methylation signatures identify biologically distinct subtypes in acute myeloid leukemia, Cancer Cell 17, 13–27.

    Article  PubMed  CAS  Google Scholar 

  18. Melki, J. R., Warnecke, P., Vincent, P. C., and Clark, S. J. (1998) Increased DNA methyltransferase expression in leukaemia, Leukemia 12, 311–316.

    Article  PubMed  CAS  Google Scholar 

  19. Gama-Sosa, M. A., Slagel, V. A., Trewyn, R. W., Oxenhandler, R., Kuo, K. C., Gehrke, C. W., and Ehrlich, M. (1983) The 5-methylcytosine content of DNA from human tumors, Nucleic Acids Res 11, 6883–6894.

    Article  PubMed  CAS  Google Scholar 

  20. Ostler, K. R., Davis, E. M., Payne, S. L., Gosalia, B. B., Exposito-Cespedes, J., Le Beau, M. M., and Godley, L. A. (2007) Cancer cells express aberrant DNMT3B transcripts encoding truncated proteins, Oncogene 26, 5553–5563.

    Article  PubMed  CAS  Google Scholar 

  21. Ehrlich, M., Woods, C. B., Yu, M. C., Dubeau, L., Yang, F., Campan, M., Weisenberger, D. J., Long, T., Youn, B., Fiala, E. S., and Laird, P. W. (2006) Quantitative analysis of associations between DNA hypermethylation, hypomethylation, and DNMT RNA levels in ovarian tumors, Oncogene 25, 2636–2645.

    Article  PubMed  CAS  Google Scholar 

  22. Jost, J. P., Oakeley, E. J., Zhu, B., Benjamin, D., Thiry, S., Siegmann, M., and Jost, Y. C. (2001) 5-Methylcytosine DNA glycosylase participates in the genome-wide loss of DNA methylation occurring during mouse myoblast differentiation, Nucleic Acids Res 29, 4452–4461.

    Article  PubMed  CAS  Google Scholar 

  23. Fraga, M. F., Ballestar, E., Villar-Garea, A., Boix-Chornet, M., Espada, J., Schotta, G., Bonaldi, T., Haydon, C., Ropero, S., Petrie, K., Iyer, N. G., Perez-Rosado, A., Calvo, E., Lopez, J. A., Cano, A., Calasanz, M. J., Colomer, D., Piris, M. A., Ahn, N., Imhof, A., Caldas, C., Jenuwein, T., and Esteller, M. (2005) Loss of acetylation at Lys16 and trimethylation at Lys20 of histone H4 is a common hallmark of human cancer, Nat Genet 37, 391–400.

    Article  PubMed  CAS  Google Scholar 

  24. Boland, C. R. and Goel, A. (2010) Microsatellite instability in colorectal cancer, Gastroenterology 138, 2073-2087 e2073.

    Google Scholar 

  25. Nomdedeu, J. F., Perea, G., Estivill, C., Lasa, A., Carnicer, M. J., Brunet, S., Aventin, A., and Sierra, J. (2005) Microsatellite instability is not an uncommon finding in adult de novo acute myeloid leukemia, Ann Hematol 84, 368–375.

    Article  PubMed  CAS  Google Scholar 

  26. Seedhouse, C. H., Das-Gupta, E. P., and Russell, N. H. (2003) Methylation of the hMLH1 promoter and its association with microsatellite instability in acute myeloid leukemia, Leukemia 17, 83–88.

    Article  PubMed  CAS  Google Scholar 

  27. Toyota, M., Kopecky, K. J., Toyota, M. O., Jair, K. W., Willman, C. L., and Issa, J. P. (2001) Methylation profiling in acute myeloid leukemia, Blood 97, 2823–2829.

    Article  PubMed  CAS  Google Scholar 

  28. Rush, L. J., Dai, Z., Smiraglia, D. J., Gao, X., Wright, F. A., Fruhwald, M., Costello, J. F., Held, W. A., Yu, L., Krahe, R., Kolitz, J. E., Bloomfield, C. D., Caligiuri, M. A., and Plass, C. (2001) Novel methylation targets in de novo acute myeloid leukemia with prevalence of chromosome 11 loci, Blood 97, 3226–3233.

    Article  PubMed  CAS  Google Scholar 

  29. Alvarez, S., Suela, J., Valencia, A., Fernandez, A., Wunderlich, M., Agirre, X., Prosper, F., Martin-Subero, J. I., Maiques, A., Acquadro, F., Rodriguez Perales, S., Calasanz, M. J., Roman-Gomez, J., Siebert, R., Mulloy, J. C., Cervera, J., Sanz, M. A., Esteller, M., and Cigudosa, J. C. (2010) DNA methylation profiles and their relationship with cytogenetic status in adult acute myeloid leukemia, PLoS One 5, e12197.

    Article  PubMed  CAS  Google Scholar 

  30. Krivtsov, A. V., Feng, Z., Lemieux, M. E., Faber, J., Vempati, S., Sinha, A. U., Xia, X., Jesneck, J., Bracken, A. P., Silverman, L. B., Kutok, J. L., Kung, A. L., and Armstrong, S. A. (2008) H3K79 methylation profiles define murine and human MLL-AF4 leukemias, Cancer Cell 14, 355–368.

    Article  PubMed  CAS  Google Scholar 

  31. Rohrs, S., Dirks, W. G., Meyer, C., Marschalek, R., Scherr, M., Slany, R., Wallace, A., Drexler, H. G., and Quentmeier, H. (2009) Hypomethylation and expression of BEX2, IGSF4 and TIMP3 indicative of MLL translocations in acute myeloid leukemia, Mol Cancer 8, 86.

    Article  PubMed  CAS  Google Scholar 

  32. Gaidzik, V. and Dohner, K. (2008) Prognostic implications of gene mutations in acute myeloid leukemia with normal cytogenetics, Semin Oncol 35, 346–355.

    Article  PubMed  CAS  Google Scholar 

  33. Dorrance, A. M., Liu, S., Yuan, W., Becknell, B., Arnoczky, K. J., Guimond, M., Strout, M. P., Feng, L., Nakamura, T., Yu, L., Rush, L. J., Weinstein, M., Leone, G., Wu, L., Ferketich, A., Whitman, S. P., Marcucci, G., and Caligiuri, M. A. (2006) Mll partial tandem duplication induces aberrant Hox expression in vivo via specific epigenetic alterations, J Clin Invest 116, 2707–2716.

    Article  PubMed  CAS  Google Scholar 

  34. Whitman, S. P., Hackanson, B., Liyanarachchi, S., Liu, S., Rush, L. J., Maharry, K., Margeson, D., Davuluri, R., Wen, J., Witte, T., Yu, L., Liu, C., Bloomfield, C. D., Marcucci, G., Plass, C., and Caligiuri, M. A. (2008) DNA hypermethylation and epigenetic silencing of the tumor suppressor gene, SLC5A8, in acute myeloid leukemia with the MLL partial tandem duplication, Blood 112, 2013–2016.

    Article  PubMed  CAS  Google Scholar 

  35. Di Croce, L., Raker, V. A., Corsaro, M., Fazi, F., Fanelli, M., Faretta, M., Fuks, F., Lo Coco, F., Kouzarides, T., Nervi, C., Minucci, S., and Pelicci, P. G. (2002) Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor, Science 295, 1079–1082.

    Article  PubMed  Google Scholar 

  36. Grignani, F., De Matteis, S., Nervi, C., Tomassoni, L., Gelmetti, V., Cioce, M., Fanelli, M., Ruthardt, M., Ferrara, F. F., Zamir, I., Seiser, C., Lazar, M. A., Minucci, S., and Pelicci, P. G. (1998) Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia, Nature 391, 815–818.

    Article  PubMed  CAS  Google Scholar 

  37. Villa, R., Pasini, D., Gutierrez, A., Morey, L., Occhionorelli, M., Vire, E., Nomdedeu, J. F., Jenuwein, T., Pelicci, P. G., Minucci, S., Fuks, F., Helin, K., and Di Croce, L. (2007) Role of the polycomb repressive complex 2 in acute promyelocytic leukemia, Cancer Cell 11, 513–525.

    Article  PubMed  CAS  Google Scholar 

  38. Fazi, F., Zardo, G., Gelmetti, V., Travaglini, L., Ciolfi, A., Di Croce, L., Rosa, A., Bozzoni, I., Grignani, F., Lo-Coco, F., Pelicci, P. G., and Nervi, C. (2007) Heterochromatic gene repression of the retinoic acid pathway in acute myeloid leukemia, Blood 109, 4432–4440.

    Article  PubMed  CAS  Google Scholar 

  39. Lugthart, S., Figueroa, M. E., Bindels, E., Skrabanek, L., Valk, P. J., Li, Y., Meyer, S., Erpelinck-Verschueren, C., Greally, J., Lowenberg, B., Melnick, A., and Delwel, R. (2010) Aberrant DNA hypermethylation signature in acute myeloid leukemia directed by EVI1, Blood.

    Google Scholar 

  40. Ohm, J. E., McGarvey, K. M., Yu, X., Cheng, L., Schuebel, K. E., Cope, L., Mohammad, H. P., Chen, W., Daniel, V. C., Yu, W., Berman, D. M., Jenuwein, T., Pruitt, K., Sharkis, S. J., Watkins, D. N., Herman, J. G., and Baylin, S. B. (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing, Nat Genet 39, 237–242.

    Article  PubMed  CAS  Google Scholar 

  41. Paul, T. A., Bies, J., Small, D., and Wolff, L. (2010) Signatures of polycomb repression and reduced H3K4 trimethylation are associated with p15INK4b DNA methylation in AML, Blood 115, 3098–3108.

    Article  PubMed  CAS  Google Scholar 

  42. Zangenberg, M., Grubach, L., Aggerholm, A., Silkjaer, T., Juhl-Christensen, C., Nyvold, C. G., Kjeldsen, E., Ommen, H. B., and Hokland, P. (2009) The combined expression of HOXA4 and MEIS1 is an independent prognostic factor in patients with AML, Eur J Haematol 83, 439–448.

    Article  PubMed  CAS  Google Scholar 

  43. Muller-Tidow, C., Klein, H. U., Hascher, A., Isken, F., Tickenbrock, L., Thoennissen, N., Agrawal-Singh, S., Tschanter, P., Disselhoff, C., Wang, Y., Becker, A., Thiede, C., Ehninger, G., Zur Stadt, U., Koschmieder, S., Seidl, M., Muller, F. U., Schmitz, W., Schlenke, P., McClelland, M., Berdel, W. E., Dugas, M., and Serve, H. (2010) Profiling of histone H3 lysine 9 trimethylation levels predicts transcription factor activity and survival in acute myeloid leukemia, Blood 116, 3564–3571.

    Article  PubMed  CAS  Google Scholar 

  44. Grimwade, D., Vyas, P., and Freeman, S. (2010) Assessment of minimal residual disease in acute myeloid leukemia, Curr Opin Oncol 22, 656–663.

    Article  PubMed  Google Scholar 

  45. Agrawal, S., Unterberg, M., Koschmieder, S., Stadt, U., Brunnberg, U., Verbeek, W., Buchner, T., Berdel, W. E., Serve, H., and Muller-Tidow, C. (2007) DNA methylation of tumor suppressor genes in clinical remission predicts the relapse risk in acute myeloid leukemia, Cancer Res 67, 1370–1377.

    Article  PubMed  CAS  Google Scholar 

  46. Galm, O., Wilop, S., Luders, C., Jost, E., Gehbauer, G., Herman, J. G., and Osieka, R. (2005) Clinical implications of aberrant DNA methylation patterns in acute myelogenous leukemia, Ann Hematol 84 Suppl 1, 39–46.

    Article  PubMed  CAS  Google Scholar 

  47. Hess, C. J., Errami, A., Berkhof, J., Denkers, F., Ossenkoppele, G. J., Nygren, A. O., Schuurhuis, G. J., and Waisfisz, Q. (2008) Concurrent methylation of promoters from tumor associated genes predicts outcome in acute myeloid leukemia, Leuk Lymphoma 49, 1132–1141.

    Article  PubMed  CAS  Google Scholar 

  48. Li, Q., Kopecky, K. J., Mohan, A., Willman, C. L., Appelbaum, F. R., Weick, J. K., and Issa, J. P. (1999) Estrogen receptor methylation is associated with improved survival in adult acute myeloid leukemia, Clin Cancer Res 5, 1077–1084.

    PubMed  CAS  Google Scholar 

  49. Shimamoto, T., Ohyashiki, J. H., and Ohyashiki, K. (2005) Methylation of p15(INK4b) and E-cadherin genes is independently correlated with poor prognosis in acute myeloid leukemia, Leuk Res 29, 653–659.

    Article  PubMed  CAS  Google Scholar 

  50. Bullinger, L., Ehrich, M., Dohner, K., Schlenk, R. F., Dohner, H., Nelson, M. R., and van den Boom, D. (2010) Quantitative DNA methylation predicts survival in adult acute myeloid leukemia, Blood 115, 636–642.

    Article  PubMed  CAS  Google Scholar 

  51. Tormo, M., Marugan, I., and Calabuig, M. (2010) Myelodysplastic syndromes: an update on molecular pathology, Clin Transl Oncol 12, 652–661.

    Article  PubMed  CAS  Google Scholar 

  52. Vardiman, J. W., Harris, N. L., and Brunning, R. D. (2002) The World Health Organization (WHO) classification of the myeloid neoplasms, Blood 100, 2292–2302.

    Article  PubMed  CAS  Google Scholar 

  53. Issa, J. P. (2010) Epigenetic changes in the myelodysplastic syndrome, Hematol Oncol Clin North Am 24, 317–330.

    Article  PubMed  Google Scholar 

  54. Grovdal, M., Khan, R., Aggerholm, A., Antunovic, P., Astermark, J., Bernell, P., Engstrom, L. M., Kjeldsen, L., Linder, O., Nilsson, L., Olsson, A., Wallvik, J., Tangen, J. M., Oberg, G., Jacobsen, S. E., Hokland, P., Porwit, A., and Hellstrom-Lindberg, E. (2007) Negative effect of DNA hypermethylation on the outcome of intensive chemotherapy in older patients with high-risk myelodysplastic syndromes and acute myeloid leukemia following myelodysplastic syndrome, Clin Cancer Res 13, 7107–7112.

    Article  PubMed  CAS  Google Scholar 

  55. Shen, L., Kantarjian, H., Guo, Y., Lin, E., Shan, J., Huang, X., Berry, D., Ahmed, S., Zhu, W., Pierce, S., Kondo, Y., Oki, Y., Jelinek, J., Saba, H., Estey, E., and Issa, J. P. (2010) DNA methylation predicts survival and response to therapy in patients with myelodysplastic syndromes, J Clin Oncol 28, 605–613.

    Article  PubMed  CAS  Google Scholar 

  56. Rosu-Myles, M. and Wolff, L. (2008) p15Ink4b: dual function in myelopoiesis and inactivation in myeloid disease, Blood Cells Mol Dis 40, 406–409.

    Article  PubMed  CAS  Google Scholar 

  57. Aggerholm, A., Holm, M. S., Guldberg, P., Olesen, L. H., and Hokland, P. (2006) Promoter hypermethylation of p15INK4B, HIC1, CDH1, and ER is frequent in myelodysplastic syndrome and predicts poor prognosis in early-stage patients, Eur J Haematol 76, 23–32.

    Article  PubMed  CAS  Google Scholar 

  58. Au, W. Y., Fung, A., Man, C., Ma, S. K., Wan, T. S., Liang, R., and Kwong, Y. L. (2003) Aberrant p15 gene promoter methylation in therapy-related myelodysplastic syndrome and acute myeloid leukaemia: clinicopathological and karyotypic associations, Br J Haematol 120, 1062–1065.

    Article  PubMed  CAS  Google Scholar 

  59. Uchida, T., Kinoshita, T., Nagai, H., Nakahara, Y., Saito, H., Hotta, T., and Murate, T. (1997) Hypermethylation of the p15INK4B gene in myelodysplastic syndromes, Blood 90, 1403–1409.

    PubMed  CAS  Google Scholar 

  60. Quesnel, B., Guillerm, G., Vereecque, R., Wattel, E., Preudhomme, C., Bauters, F., Vanrumbeke, M., and Fenaux, P. (1998) Methylation of the p15(INK4b) gene in myelodysplastic syndromes is frequent and acquired during disease progression, Blood 91, 2985–2990.

    PubMed  CAS  Google Scholar 

  61. Herman, J. G., Civin, C. I., Issa, J. P., Collector, M. I., Sharkis, S. J., and Baylin, S. B. (1997) Distinct patterns of inactivation of p15INK4B and p16INK4A characterize the major types of hematological malignancies, Cancer Res 57, 837–841.

    PubMed  CAS  Google Scholar 

  62. Figueroa, M. E., Skrabanek, L., Li, Y., Jiemjit, A., Fandy, T. E., Paietta, E., Fernandez, H., Tallman, M. S., Greally, J. M., Carraway, H., Licht, J. D., Gore, S. D., and Melnick, A. (2009) MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation, Blood 114, 3448–3458.

    Article  PubMed  CAS  Google Scholar 

  63. Jiang, Y., Dunbar, A., Gondek, L. P., Mohan, S., Rataul, M., O’Keefe, C., Sekeres, M., Saunthararajah, Y., and Maciejewski, J. P. (2009) Aberrant DNA methylation is a dominant mechanism in MDS progression to AML, Blood 113, 1315–1325.

    Article  PubMed  CAS  Google Scholar 

  64. Kondo, Y. and Issa, J. P. (2004) Epigenetic changes in colorectal cancer, Cancer Metastasis Rev 23, 29–39.

    Article  PubMed  CAS  Google Scholar 

  65. Fenaux, P., Mufti, G. J., Hellstrom-Lindberg, E., Santini, V., Gattermann, N., Germing, U., Sanz, G., List, A. F., Gore, S., Seymour, J. F., Dombret, H., Backstrom, J., Zimmerman, L., McKenzie, D., Beach, C. L., and Silverman, L. R. (2010) Azacitidine prolongs overall survival compared with conventional care regimens in elderly patients with low bone marrow blast count acute myeloid leukemia, J Clin Oncol 28, 562–569.

    Article  PubMed  CAS  Google Scholar 

  66. Cashen, A. F., Schiller, G. J., O’Donnell, M. R., and DiPersio, J. F. (2010) Multicenter, phase II study of decitabine for the first-line treatment of older patients with acute myeloid leukemia, J Clin Oncol 28, 556–561.

    Article  PubMed  CAS  Google Scholar 

  67. Ravandi, F., Issa, J. P., Garcia-Manero, G., O’Brien, S., Pierce, S., Shan, J., Borthakur, G., Verstovsek, S., Faderl, S., Cortes, J., and Kantarjian, H. (2009) Superior outcome with hypomethylating therapy in patients with acute myeloid leukemia and high-risk myelodysplastic syndrome and chromosome 5 and 7 abnormalities, Cancer 115, 5746–5751.

    Article  PubMed  CAS  Google Scholar 

  68. Raj, K., John, A., Ho, A., Chronis, C., Khan, S., Samuel, J., Pomplun, S., Thomas, N. S., and Mufti, G. J. (2007) CDKN2B methylation status and isolated chromosome 7 abnormalities predict responses to treatment with 5-azacytidine, Leukemia 21, 1937–1944.

    Article  PubMed  CAS  Google Scholar 

  69. Itzykson, R., Thepot, S., Quesnel, B., Dreyfus, F., Beyne-Rauzy, O., Turlure, P., Vey, N., Recher, C., Dartigeas, C., Legros, L., Delaunay, J., Salanoubat, C., Visanica, S., Stamatoullas, A., Isnard, F., Marfaing-Koka, A., de Botton, S., Chelghoum, Y., Taksin, A. L., Plantier, I., Ame, S., Boehrer, S., Gardin, C., Beach, C. L., Ades, L., and Fenaux, P. (2011) Prognostic factors of response and overall survival in 282 higher-risk myelodysplastic syndromes treated with azacitidine, Blood 117, 403–411.

    Article  PubMed  CAS  Google Scholar 

  70. Blum, W., Garzon, R., Klisovic, R. B., Schwind, S., Walker, A., Geyer, S., Liu, S., Havelange, V., Becker, H., Schaaf, L., Mickle, J., Devine, H., Kefauver, C., Devine, S. M., Chan, K. K., Heerema, N. A., Bloomfield, C. D., Grever, M. R., Byrd, J. C., Villalona-Calero, M., Croce, C. M., and Marcucci, G. (2010) Clinical response and miR-29b predictive significance in older AML patients treated with a 10-day schedule of decitabine, Proc Natl Acad Sci U S A 107, 7473–7478.

    Article  PubMed  CAS  Google Scholar 

  71. Fandy, T. E., Herman, J. G., Kerns, P., Jiemjit, A., Sugar, E. A., Choi, S. H., Yang, A. S., Aucott, T., Dauses, T., Odchimar-Reissig, R., Licht, J., McConnell, M. J., Nasrallah, C., Kim, M. K., Zhang, W., Sun, Y., Murgo, A., Espinoza-Delgado, I., Oteiza, K., Owoeye, I., Silverman, L. R., Gore, S. D., and Carraway, H. E. (2009) Early epigenetic changes and DNA damage do not predict clinical response in an overlapping schedule of 5-azacytidine and entinostat in patients with myeloid malignancies, Blood 114, 2764–2773.

    Article  PubMed  CAS  Google Scholar 

  72. Fenaux, P. and Ades, L. (2009) Review of azacitidine trials in Intermediate-2-and High-risk myelodysplastic syndromes, Leuk Res 33 Suppl 2, S7–11.

    Article  PubMed  CAS  Google Scholar 

  73. Keating, G. M. (2009) Azacitidine: a review of its use in higher-risk myelodysplastic syndromes/acute myeloid leukaemia, Drugs 69, 2501-2518.

    Article  PubMed  CAS  Google Scholar 

  74. Hollenbach, P. W., Nguyen, A. N., Brady, H., Williams, M., Ning, Y., Richard, N., Krushel, L., Aukerman, S. L., Heise, C., and MacBeth, K. J. (2010) A comparison of azacitidine and decitabine activities in acute myeloid leukemia cell lines, PLoS One 5, e9001.

    Article  PubMed  CAS  Google Scholar 

  75. Xiong, J. and Epstein, R. J. (2009) Growth inhibition of human cancer cells by 5-aza-2′-deoxycytidine does not correlate with its effects on INK4a/ARF expression or initial promoter methylation status, Mol Cancer Ther 8, 779–785.

    Article  PubMed  CAS  Google Scholar 

  76. Flotho, C., Claus, R., Batz, C., Schneider, M., Sandrock, I., Ihde, S., Plass, C., Niemeyer, C. M., and Lubbert, M. (2009) The DNA methyltransferase inhibitors azacitidine, decitabine and zebularine exert differential effects on cancer gene expression in acute myeloid leukemia cells, Leukemia 23, 1019–1028.

    Article  PubMed  CAS  Google Scholar 

  77. Kuendgen, A., Schmid, M., Schlenk, R., Knipp, S., Hildebrandt, B., Steidl, C., Germing, U., Haas, R., Dohner, H., and Gattermann, N. (2006) The histone deacetylase (HDAC) inhibitor valproic acid as monotherapy or in combination with all-trans retinoic acid in patients with acute myeloid leukemia, Cancer 106, 112–119.

    Article  PubMed  CAS  Google Scholar 

  78. Prebet, T. and Vey, N. (2010) Vorinostat in acute myeloid leukemia and myelodysplastic syndromes, Expert Opin Investig Drugs 20, 287–295.

    Article  PubMed  Google Scholar 

  79. Garcia-Manero, G., Assouline, S., Cortes, J., Estrov, Z., Kantarjian, H., Yang, H., Newsome, W. M., Miller, W. H., Rousseau, C., Kalita, A., Bonfils, C., Dubay, M., Patterson, T. A., Li, Z., Besterman, J. M., Reid, G., Laille, E., Martell, R. E., and Minden, M. (2008) Phase 1 study of the oral isotype specific histone deacetylase inhibitor MGCD0103 in leukemia, Blood 112, 981–989.

    Article  PubMed  CAS  Google Scholar 

  80. Garcia-Manero, G., Yang, H., Bueso-Ramos, C., Ferrajoli, A., Cortes, J., Wierda, W. G., Faderl, S., Koller, C., Morris, G., Rosner, G., Loboda, A., Fantin, V. R., Randolph, S. S., Hardwick, J. S., Reilly, J. F., Chen, C., Ricker, J. L., Secrist, J. P., Richon, V. M., Frankel, S. R., and Kantarjian, H. M. (2008) Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes, Blood 111, 1060–1066.

    Article  PubMed  CAS  Google Scholar 

  81. Ungerstedt, J. S., Sowa, Y., Xu, W. S., Shao, Y., Dokmanovic, M., Perez, G., Ngo, L., Holmgren, A., Jiang, X., and Marks, P. A. (2005) Role of thioredoxin in the response of normal and transformed cells to histone deacetylase inhibitors, Proceedings of the National Academy of Sciences of the United States of America 102, 673–678.

    Article  PubMed  CAS  Google Scholar 

  82. Barnes, D. J. and Melo, J. V. (2002) Cytogenetic and molecular genetic aspects of chronic myeloid leukaemia, Acta Haematol 108, 180–202.

    Article  PubMed  CAS  Google Scholar 

  83. Druker, B. J., O’Brien, S. G., Cortes, J., and Radich, J. (2002) Chronic myelogenous leukemia, Hematology Am Soc Hematol Educ Program 2002, 111–135.

    Article  Google Scholar 

  84. Tefferi, A. and Gilliland, D. G. (2005) The JAK2V617F tyrosine kinase mutation in myeloproliferative disorders: status report and immediate implications for disease classification and diagnosis, Mayo Clin Proc 80, 947–958.

    Article  PubMed  CAS  Google Scholar 

  85. Sawyers, C. L. (1999) Chronic myeloid leukemia, N Engl J Med 340, 1330–1340.

    Article  PubMed  CAS  Google Scholar 

  86. Hochhaus, A. (2008) First-Line management of CML: a state of the art review, J Natl Compr Canc Netw 6 Suppl 2, S1–S10.

    PubMed  CAS  Google Scholar 

  87. Roman-Gomez, J., Jimenez-Velasco, A., Agirre, X., Castillejo, J. A., Navarro, G., San Jose-Eneriz, E., Garate, L., Cordeu, L., Cervantes, F., Prosper, F., Heiniger, A., and Torres, A. (2008) Repetitive DNA hypomethylation in the advanced phase of chronic myeloid leukemia, Leuk Res 32, 487-490.

    Article  PubMed  CAS  Google Scholar 

  88. Strathdee, G., Holyoake, T. L., Sim, A., Parker, A., Oscier, D. G., Melo, J. V., Meyer, S., Eden, T., Dickinson, A. M., Mountford, J. C., Jorgensen, H. G., Soutar, R., and Brown, R. (2007) Inactivation of HOXA genes by hypermethylation in myeloid and lymphoid malignancy is frequent and associated with poor prognosis, Clin Cancer Res 13, 5048–5055.

    Article  PubMed  CAS  Google Scholar 

  89. Dunwell, T., Hesson, L., Rauch, T. A., Wang, L., Clark, R. E., Dallol, A., Gentle, D., Catchpoole, D., Maher, E. R., Pfeifer, G. P., and Latif, F. (2010) A genome-wide screen identifies frequently methylated genes in haematological and epithelial cancers, Mol Cancer 9, 44.

    Article  PubMed  CAS  Google Scholar 

  90. Chim, C. S., Wong, K. Y., Leung, C. Y., Chung, L. P., Hui, P. K., Chan, S. Y., and Yu, L. Epigenetic inactivation of the hsa-miR-203 in haematological malignancies, J Cell Mol Med.

    Google Scholar 

  91. Chim, C. S., Wong, K. Y., Qi, Y., Loong, F., Lam, W. L., Wong, L. G., Jin, D. Y., Costello, J. F., and Liang, R. (2010) Epigenetic inactivation of the miR-34a in hematological malignancies, Carcinogenesis 31, 745–750.

    Article  PubMed  CAS  Google Scholar 

  92. Strathdee, G., Ferguson, S., Sim, A., and Brown, R. DNA methylation does not regulate JUNB expression in CML: comment on “Downregulation of JUNB mRNA expression in advanced phase chronic myelogenous leukemia” by Hoshino et al. [Leuk. Res. 33 (2009) 1361-1366], Leuk Res 34, 685–686.

    Google Scholar 

  93. Uhm, K. O., Lee, E. S., Lee, Y. M., Park, J. S., Kim, S. J., Kim, B. S., Kim, H. S., and Park, S. H. (2009) Differential methylation pattern of ID4, SFRP1, and SHP1 between acute myeloid leukemia and chronic myeloid leukemia, J Korean Med Sci 24, 493–497.

    Article  PubMed  CAS  Google Scholar 

  94. Wang, Y. L., Qian, J., Lin, J., Yao, D. M., Qian, Z., Zhu, Z. H., and Li, J. Y. (2010) Methylation status of DDIT3 gene in chronic myeloid leukemia, J Exp Clin Cancer Res 29, 54.

    Article  PubMed  CAS  Google Scholar 

  95. Ohyashiki, J. H., Ohyashiki, K., Kawakubo, K., Tauchi, T., Shimamoto, T., and Toyama, K. (1993) The methylation status of the major breakpoint cluster region in human leukemia cells, including Philadelphia chromosome-positive cells, is linked to the lineage of hematopoietic cells, Leukemia 7, 801–807.

    PubMed  CAS  Google Scholar 

  96. Mizuno, S., Chijiwa, T., Okamura, T., Akashi, K., Fukumaki, Y., Niho, Y., and Sasaki, H. (2001) Expression of DNA methyltransferases DNMT1, 3A, and 3B in normal hematopoiesis and in acute and chronic myelogenous leukemia, Blood 97, 1172–1179.

    Article  PubMed  CAS  Google Scholar 

  97. Asimakopoulos, F. A., Shteper, P. J., Krichevsky, S., Fibach, E., Polliack, A., Rachmilewitz, E., Ben-Neriah, Y., and Ben-Yehuda, D. (1999) ABL1 methylation is a distinct molecular event associated with clonal evolution of chronic myeloid leukemia, Blood 94, 2452–2460.

    PubMed  CAS  Google Scholar 

  98. Issa, J. P., Kantarjian, H., Mohan, A., O’Brien, S., Cortes, J., Pierce, S., and Talpaz, M. (1999) Methylation of the ABL1 promoter in chronic myelogenous leukemia: lack of prognostic significance, Blood 93, 2075–2080.

    PubMed  CAS  Google Scholar 

  99. San Jose-Eneriz, E., Agirre, X., Jimenez-Velasco, A., Cordeu, L., Martin, V., Arqueros, V., Garate, L., Fresquet, V., Cervantes, F., Martinez-Climent, J. A., Heiniger, A., Torres, A., Prosper, F., and Roman-Gomez, J. (2009) Epigenetic down-regulation of BIM expression is associated with reduced optimal responses to imatinib treatment in chronic myeloid leukaemia, Eur J Cancer 45, 1877–1889.

    Article  PubMed  CAS  Google Scholar 

  100. Fiskus, W., Wang, Y., Joshi, R., Rao, R., Yang, Y., Chen, J., Kolhe, R., Balusu, R., Eaton, K., Lee, P., Ustun, C., Jillella, A., Buser, C. A., Peiper, S., and Bhalla, K. (2008) Cotreatment with vorinostat enhances activity of MK-0457 (VX-680) against acute and chronic myelogenous leukemia cells, Clin Cancer Res 14, 6106–6115.

    Article  PubMed  CAS  Google Scholar 

  101. Bixby, D. and Talpaz, M. (2009) Mechanisms of resistance to tyrosine kinase inhibitors in chronic myeloid leukemia and recent therapeutic strategies to overcome resistance, Hematology Am Soc Hematol Educ Program 2009, 461–476.

    Article  Google Scholar 

  102. Lee, S. M., Bae, J. H., Kim, M. J., Lee, H. S., Lee, M. K., Chung, B. S., Kim, D. W., Kang, C. D., and Kim, S. H. (2007) Bcr-Abl-independent imatinib-resistant K562 cells show aberrant protein acetylation and increased sensitivity to histone deacetylase inhibitors, J Pharmacol Exp Ther 322, 1084–1092.

    Article  PubMed  CAS  Google Scholar 

  103. Zhang, B., Strauss, A. C., Chu, S., Li, M., Ho, Y., Shiang, K. D., Snyder, D. S., Huettner, C. S., Shultz, L., Holyoake, T., and Bhatia, R. (2010) Effective targeting of quiescent chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination with imatinib mesylate, Cancer Cell 17, 427–442.

    Article  PubMed  CAS  Google Scholar 

  104. Kantarjian, H. M., O’Brien, S., Cortes, J., Giles, F. J., Faderl, S., Issa, J. P., Garcia-Manero, G., Rios, M. B., Shan, J., Andreeff, M., Keating, M., and Talpaz, M. (2003) Results of decitabine (5-aza-2′deoxycytidine) therapy in 130 patients with chronic myelogenous leukemia, Cancer 98, 522–528.

    Article  PubMed  CAS  Google Scholar 

  105. Ekmekci, C. G., Gutierrez, M. I., Siraj, A. K., Ozbek, U., and Bhatia, K. (2004) Aberrant methylation of multiple tumor suppressor genes in acute myeloid leukemia, Am J Hematol 77, 233–240.

    Article  PubMed  CAS  Google Scholar 

  106. Kroeger, H., Jelinek, J., Estecio, M. R., He, R., Kondo, K., Chung, W., Zhang, L., Shen, L., Kantarjian, H. M., Bueso-Ramos, C. E., and Issa, J. P. (2008) Aberrant CpG island methylation in acute myeloid leukemia is accentuated at relapse, Blood 112, 1366-1373.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Deneberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Deneberg, S. (2012). Epigenetics in Myeloid Malignancies. In: Dumitrescu, R., Verma, M. (eds) Cancer Epigenetics. Methods in Molecular Biology, vol 863. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-612-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-612-8_7

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-611-1

  • Online ISBN: 978-1-61779-612-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics