Skip to main content

Multifactorial Etiology of Gastric Cancer

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 863))

Abstract

The prevalence of gastric cancer is associated with several factors including geographical location, diet, and genetic background of the host. However, it is evident that infection with Helicobacter pylori (H. pylori) is crucial for the development of the disease. Virulence of the bacteria is also important in modulating the risk of the disease. After infection, H. pylori gains access to the gastric mucosa and triggers the production of cytokines that promote recruitment of inflammatory cells, probably involved in tissue damage. Once the infection is established, a cascade of inflammatory steps associated with changes in the gastric epithelia that may lead to cancer is triggered. H. pylori-induced gastritis and H. pylori-associated gastric cancer have been the focus of extensive research aiming to discover the underlying mechanisms of gastric tissue damage. This research has led to the association of host genetic components with the risk of the disease. Among these is the presence of single nucleotide polymorphisms (SNPs) in several genes, including cytokine genes, which are able to differentially modulate the production of inflammatory cytokines and then modulate the risk of gastric cancer. Interestingly, the frequency of some of these SNPs is different among populations and may serve as a predictive factor for gastric cancer risk within that specific population. However, the role played by other genetic modifications should not be minimized. Methylation of gene promoters has been recognized as a major mechanism of gene expression regulation without changing the primary structure of the DNA. Most DNA methylation occurs in cytosine residues in CpG dinucleotide, but it can also be found in other DNA bases. DNA methyltransferases add methyl groups to the CpG dinucleotide, and when this methylation level is too high, the gene expression is turned off. In H. pylori infection as well as in gastric cancer, hypermethylation of promoters of genes involved in cell cycle control, metabolism of essential nutrients, and production of inflammatory mediators, among others, has been described. Interestingly, DNA changes like SNPs or mutations can create CpG sites in sequences where transcription factors normally sit, affecting transcription.

In this chapter, we review the literature about the role of SNPs and methylation on H. pylori infection and gastric cancer, with big emphasis to the H. pylori role in the development of the disease due to the strong association between both.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. GLOBOCAN. Stomach Cancer Incidence and Mortality Worldwide in 2008. http://globocan.iarc.fr/. 2008.

  2. Parkin, D.M., Bray, F., Ferlay, J., and Pisani, P. (2005) Global cancer statistics, 2002. CA Cancer J. Clin., 55, 74–108.

    Article  PubMed  Google Scholar 

  3. Parkin, D.M. (2004) International variation. Oncogene, 23, 6329–6340.

    Article  PubMed  CAS  Google Scholar 

  4. Jemal, A., Siegel, R., Xu, J., and Ward, E. (2010) Cancer statistics, 2010. CA Cancer J Clin., 60, 277–300.

    Article  PubMed  Google Scholar 

  5. Jass, J.R., Sobin, L.H., and Watanabe, H. (1990) The World Health Organization’s histologic classification of gastrointestinal tumors. A commentary on the second edition. Cancer, 66, 2162–2167.

    Article  PubMed  CAS  Google Scholar 

  6. Mulligan, R.M. (1972) Histogenesis and biologic behavior of gastric carcinoma. Pathol. Annu., 7, 349–415.

    PubMed  CAS  Google Scholar 

  7. Ming, S.C. (1977) Gastric carcinoma. A pathobiological classification. Cancer, 39, 2475–2485.

    Article  PubMed  CAS  Google Scholar 

  8. LAURÉN, P. (1965) The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at histo-clinical classification. Acta Pathol. Microbiol. Scand., 64, 31–49.

    PubMed  Google Scholar 

  9. Goseki, N., Takizawa, T., and Koike, M. (1992) Differences in the mode of the extension of gastric cancer classified by histological type: new histological classification of gastric carcinoma. Gut, 33, 606–612.

    Article  PubMed  CAS  Google Scholar 

  10. Crew, K.D. and Neugut, A.I. (2006) Epidemiology of gastric cancer. World J Gastroenterol., 12, 354–362.

    PubMed  Google Scholar 

  11. Correa, P., Sasano, N., Stemmermann, G.N., and Haenszel, W. (1973) Pathology of gastric carcinoma in Japanese populations: comparisons between Miyagi prefecture, Japan, and Hawaii. J Natl. Cancer Inst., 51, 1449–1459.

    PubMed  CAS  Google Scholar 

  12. Mohar, A., Suchil-Bernal, L., Hernandez-Guerrero, A., Podolsky-Rapoport, I., Herrera-Goepfert, R., Mora-Tiscareno, A. et al. (1997) Intestinal type: diffuse type ratio of gastric carcinoma in a Mexican population. J Exp. Clin. Cancer Res., 16, 189–194.

    PubMed  CAS  Google Scholar 

  13. Kaneko, S. and Yoshimura, T. (2001) Time trend analysis of gastric cancer incidence in Japan by histological types, 1975-1989. Br. J Cancer, 84, 400–405.

    Article  PubMed  CAS  Google Scholar 

  14. Henson, D.E., Dittus, C., Younes, M., Nguyen, H., and Bores-Saavedra, J. (2004) Differential trends in the intestinal and diffuse types of gastric carcinoma in the United States, 1973-2000: increase in the signet ring cell type. Arch. Pathol. Lab Med., 128, 765–770.

    PubMed  Google Scholar 

  15. IARC. IARC monograph on the evaluation of carcinogenic risks to humans:Schistosomes, liver flukes and Helicobacter pylori. IARC 61, 177–240. 1994.

    Google Scholar 

  16. Suerbaum, S. and Michetti, P. (2002) Helicobacter pylori infection. N. Engl. J Med., 347, 1175–1186.

    Article  PubMed  CAS  Google Scholar 

  17. Uemura, N., Okamoto, S., Yamamoto, S., Matsumura, N., Yamaguchi, S., Yamakido, M. et al. (2001) Helicobacter pylori infection and the development of gastric cancer. N. Engl. J Med., 345, 784–789.

    Article  PubMed  CAS  Google Scholar 

  18. Wroblewski, L.E., Peek, R.M., Jr., and Wilson, K.T. (2010) Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin. Microbiol. Rev., 23, 713–739.

    Article  PubMed  CAS  Google Scholar 

  19. Dixon, M.F., Genta, R.M., Yardley, J.H., and Correa, P. (1996) Classification and grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994. Am. J. Surg. Pathol., 20, 1161–1181.

    Google Scholar 

  20. Hansson, L.E., Nyren, O., Hsing, A.W., Bergstrom, R., Josefsson, S., Chow, W.H. et al. (1996) The risk of stomach cancer in patients with gastric or duodenal ulcer disease. N. Engl. J Med., 335, 242–249.

    Article  PubMed  CAS  Google Scholar 

  21. Correa, P. and Houghton, J. (2007) Carcinogenesis of Helicobacter pylori. Gastroenterology, 133, 659–672.

    Article  PubMed  CAS  Google Scholar 

  22. Zabaleta, J., Camargo, M.C., Piazuelo, M.B., Fontham, E., Schneider, B.G., Sicinschi, L.A. et al. (2006) Association of interleukin-1beta gene polymorphisms with precancerous gastric lesions in African Americans and Caucasians. Am. J. Gastroenterol., 101, 163–171.

    Article  PubMed  CAS  Google Scholar 

  23. Rugge, M., Correa, P., Dixon, M.F., Hattori, T., Leandro, G., Lewin, K. et al. (2000) Gastric dysplasia: the Padova international classification. Am. J Surg. Pathol., 24, 167–176.

    Article  PubMed  CAS  Google Scholar 

  24. Correa, P., Haenszel, W., Cuello, C., Zavala, D., Fontham, E., Zarama, G. et al. (1990) Gastric precancerous process in a high risk population: cohort follow-up. Cancer Res., 50, 4737–4740.

    PubMed  CAS  Google Scholar 

  25. Coussens, L.M. and Werb, Z. (2002) Inflammation and cancer. Nature, 420, 860–867.

    Article  PubMed  CAS  Google Scholar 

  26. El-Omar, E.M., Carrington, M., Chow, W.H., McColl, K.E., Bream, J.H., Young, H.A. et al. (2000) Interleukin-1 polymorphisms associated with increased risk of gastric cancer. Nature, 404, 398–402.

    Article  PubMed  CAS  Google Scholar 

  27. Alpizar-Alpizar,W., Perez-Perez, G.I., Une, C., Cuenca, P., and Sierra, R. (2005) Association of interleukin-1B and interleukin-1RN polymorphisms with gastric cancer in a high-risk population of Costa Rica. Clin. Exp. Med., 5, 169–176.

    Article  PubMed  CAS  Google Scholar 

  28. Machado, J.C., Figueiredo, C., Canedo, P., Pharoah, P., Carvalho, R., Nabais, S. et al. (2003) A proinflammatory genetic profile increases the risk for chronic atrophic gastritis and gastric carcinoma. Gastroenterology, 125, 364–371.

    Article  PubMed  CAS  Google Scholar 

  29. El-Omar, E.M., Rabkin, C.S., Gammon, M.D., Vaughan, T.L., Risch, H.A., Schoenberg, J.B. et al. (2003) Increased risk of noncardia gastric cancer associated with proinflammatory cytokine gene polymorphisms. Gastroenterology, 124, 1193–1201.

    Article  PubMed  CAS  Google Scholar 

  30. Zabaleta, J., Camargo, M.C., Ritchie, M.D., Piazuelo, M.B., Sierra, R.A., Turner, S.D. et al. (2011) Association of haplotypes of inflammation-related genes with gastric preneoplastic lesions in African Americans and Caucasians. Int. J Cancer, 128, 668–675.

    Article  PubMed  CAS  Google Scholar 

  31. Banatvala, N., Mayo, K., Megraud, F., Jennings, R., Deeks, J.J., and Feldman, R.A. (1993) The cohort effect and Helicobacter pylori. J Infect. Dis., 168, 219–221.

    Article  PubMed  CAS  Google Scholar 

  32. Lindkvist, P., Asrat, D., Nilsson, I., Tsega, E., Olsson, G.L., Wretlind, B. et al. (1996) Age at acquisition of Helicobacter pylori infection: comparison of a high and a low prevalence country. Scand. J Infect. Dis., 28, 181–184.

    Article  PubMed  CAS  Google Scholar 

  33. Fiedorek, S.C., Malaty, H.M., Evans, D.L., Pumphrey, C.L., Casteel, H.B., Evans, D.J., Jr. et al. (1991) Factors influencing the epidemiology of Helicobacter pylori infection in children. Pediatrics, 88, 578–582.

    PubMed  CAS  Google Scholar 

  34. Sitas, F., Yarnell, J., and Forman, D. (1992) Helicobacter pylori infection rates in relation to age and social class in a population of Welsh men. Gut, 33, 1582.

    Article  PubMed  CAS  Google Scholar 

  35. Cover, T.L. and Blaser, M.J. (1992) Purification and characterization of the vacuolating toxin from Helicobacter pylori. J Biol. Chem., 267, 10570–10575.

    PubMed  CAS  Google Scholar 

  36. Ilver, D., Barone, S., Mercati, D., Lupetti, P., and Telford, J.L. (2004) Helicobacter pylori toxin VacA is transferred to host cells via a novel contact-dependent mechanism. Cell Microbiol., 6, 167–174.

    Article  PubMed  CAS  Google Scholar 

  37. Leunk, R.D., Johnson, P.T., David, B.C., Kraft, W.G., and Morgan, D.R. (1988) Cytotoxic activity in broth-culture filtrates of Campylobacter pylori. J Med. Microbiol., 26, 93–99.

    Article  PubMed  CAS  Google Scholar 

  38. Szabo, I., Brutsche, S., Tombola, F., Moschioni, M., Satin, B., Telford, J.L. et al. (1999) Formation of anion-selective channels in the cell plasma membrane by the toxin VacA of Helicobacter pylori is required for its biological activity. EMBO J, 18, 5517–5527.

    Article  PubMed  CAS  Google Scholar 

  39. Tombola, F., Morbiato, L., Del, G.G., Rappuoli, R., Zoratti, M., and Papini, E. (2001) The Helicobacter pylori VacA toxin is a urea permease that promotes urea diffusion across epithelia. J Clin. Invest, 108, 929–937.

    PubMed  CAS  Google Scholar 

  40. Mobley, H.L., Island, M.D., and Hausinger, R.P. (1995) Molecular biology of microbial ureases. Microbiol. Rev., 59, 451–480.

    PubMed  CAS  Google Scholar 

  41. Eaton, K.A., Brooks, C.L., Morgan, D.R., and Krakowka, S. (1991) Essential role of urease in pathogenesis of gastritis induced by Helicobacter pylori in gnotobiotic piglets. Infect. Immun., 59, 2470–2475.

    PubMed  CAS  Google Scholar 

  42. Eaton, K.A. and Krakowka, S. (1994) Effect of gastric pH on urease-dependent colonization of gnotobiotic piglets by Helicobacter pylori. Infect. Immun., 62, 3604–3607.

    PubMed  CAS  Google Scholar 

  43. Bauerfeind, P., Garner, R., Dunn, B.E., and Mobley, H.L. (1997) Synthesis and activity of Helicobacter pylori urease and catalase at low pH. Gut, 40, 25–30.

    PubMed  CAS  Google Scholar 

  44. Goodwin, C.S., Armstrong, J.A., and Marshall, B.J. (1986) Campylobacter pyloridis, gastritis, and peptic ulceration. J Clin. Pathol., 39, 353–365.

    Article  PubMed  CAS  Google Scholar 

  45. Smoot, D.T., Mobley, H.L., Chippendale, G.R., Lewison, J.F., and Resau, J.H. (1990) Helicobacter pylori urease activity is toxic to human gastric epithelial cells. Infect. Immun., 58, 1992–1994.

    PubMed  CAS  Google Scholar 

  46. Odenbreit, S., Puls, J., Sedlmaier, B., Gerland, E., Fischer, W., and Haas, R. (2000) Translocation of Helicobacter pylori CagA into gastric epithelial cells by type IV secretion. Science, 287, 1497–1500.

    Article  PubMed  CAS  Google Scholar 

  47. Backert, S., Ziska, E., Brinkmann, V., Zimny-Arndt, U., Fauconnier, A., Jungblut, P.R. et al. (2000) Translocation of the Helicobacter pylori CagA protein in gastric epithelial cells by a type IV secretion apparatus. Cell Microbiol., 2, 155–164.

    Article  PubMed  CAS  Google Scholar 

  48. Stein, M., Bagnoli, F., Halenbeck, R., Rappuoli, R., Fantl, W.J., and Covacci, A. (2002) c-Src/Lyn kinases activate Helicobacter pylori CagA through tyrosine phosphorylation of the EPIYA motifs. Mol. Microbiol., 43, 971–980.

    Article  PubMed  CAS  Google Scholar 

  49. Higashi, H., Tsutsumi, R., Muto, S., Sugiyama, T., Azuma, T., Asaka, M. et al. (2002) SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science, 295, 683–686.

    Article  PubMed  CAS  Google Scholar 

  50. Puls, J., Fischer, W., and Haas, R. (2002) Activation of Helicobacter pylori CagA by tyrosine phosphorylation is essential for dephosphorylation of host cell proteins in gastric epithelial cells. Mol. Microbiol., 43, 961–969.

    Article  PubMed  CAS  Google Scholar 

  51. Loh, J.T., Torres, V.J., and Cover, T.L. (2007) Regulation of Helicobacter pylori cagA expression in response to salt. Cancer Res., 67, 4709–4715.

    Article  PubMed  CAS  Google Scholar 

  52. Segal, E.D., Cha, J., Lo, J., Falkow, S., and Tompkins, L.S. (1999) Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc. Natl. Acad. Sci. U. S. A, 96, 14559–14564.

    Article  PubMed  CAS  Google Scholar 

  53. Kunkel, S.L., Standiford, T., Kasahara, K., and Strieter, R.M. (1991) Interleukin-8 (IL-8): the major neutrophil chemotactic factor in the lung. Exp. Lung Res., 17, 17–23.

    Article  PubMed  CAS  Google Scholar 

  54. Papoff, P., Fiorucci, P., Ottaviano, C., and Bucci, G. (1995) Interleukin-8: a potent neutrophil chemotactic factor. Arch. Dis. Child Fetal Neonatal Ed, 73, F54.

    Article  PubMed  CAS  Google Scholar 

  55. Matsushima, K., Baldwin, E.T., and Mukaida, N. (1992) Interleukin-8 and MCAF: novel leukocyte recruitment and activating cytokines. Chem. Immunol., 51, 236–265.

    Article  PubMed  CAS  Google Scholar 

  56. Roebuck, K.A. (1999) Regulation of interleukin-8 gene expression. J. Interferon Cytokine Res., 19, 429–438.

    Article  PubMed  CAS  Google Scholar 

  57. McGee, D.J., Radcliff, F.J., Mendz, G.L., Ferrero, R.L., and Mobley, H.L. (1999) Helicobacter pylori rocF is required for arginase activity and acid protection in vitro but is not essential for colonization of mice or for urease activity. J. Bacteriol., 181, 7314–7322.

    PubMed  CAS  Google Scholar 

  58. Tomb, J.F., White, O., Kerlavage, A.R., Clayton, R.A., Sutton, G.G., Fleischmann, R.D. et al. (1997) The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature, 388, 539–547.

    Article  PubMed  CAS  Google Scholar 

  59. Alm, R.A., Ling, L.S., Moir, D.T., King, B.L., Brown, E.D., Doig, P.C. et al. (1999) Genomic-sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature, 397, 176–180.

    Article  PubMed  CAS  Google Scholar 

  60. Sekowska, A., Danchin, A., and Risler, J.L. (2000) Phylogeny of related functions: the case of polyamine biosynthetic enzymes. Microbiology, 146 (Pt 8), 1815–1828.

    PubMed  CAS  Google Scholar 

  61. Tabor, C.W. and Tabor, H. (1984) Polyamines. Annu. Rev. Biochem., 53, 749–790.

    Article  PubMed  CAS  Google Scholar 

  62. Roberts, S.C., Tancer, M.J., Polinsky, M.R., Gibson, K.M., Heby, O., and Ullman, B. (2004) Arginase plays a pivotal role in polyamine precursor metabolism in Leishmania. Characterization of gene deletion mutants. J. Biol. Chem., 279, 23668–23678.

    Article  PubMed  CAS  Google Scholar 

  63. Mendz, G.L. and Hazell, S.L. (1995) Aminoacid utilization by Helicobacter pylori. Int. J. Biochem. Cell Biol., 27, 1085–1093.

    Article  PubMed  CAS  Google Scholar 

  64. Zabaleta, J., McGee, D.J., Zea, A.H., Hernandez, C.P., Rodriguez, P.C., Sierra, R.A. et al. (2004) Helicobacter pylori arginase inhibits T cell proliferation and reduces the expression of the TCR zeta-chain (CD3zeta). J. Immunol., 173, 586–593.

    PubMed  CAS  Google Scholar 

  65. Gobert, A.P., McGee, D.J., Akhtar, M., Mendz, G.L., Newton, J.C., Cheng, Y. et al. (2001) Helicobacter pylori arginase inhibits nitric oxide production by eukaryotic cells: a strategy for bacterial survival. Proc. Natl. Acad. Sci. U. S. A, 98, 13844–13849.

    Article  PubMed  CAS  Google Scholar 

  66. Chmiela, M., Lelwala-Guruge, J.A., Wadstrom, T., and Rudnicka, W. (1996) The stimulation and inhibition of T cell proliferation by Helicobacter pylori components. J. Physiol Pharmacol., 47, 195–202.

    PubMed  CAS  Google Scholar 

  67. Rudnicka, W., Covacci, A., Wadstrom, T., and Chmiela, M. (1998) A recombinant fragment of Helicobacter pylori CagA affects proliferation of human cells. J. Physiol Pharmacol., 49, 111–119.

    PubMed  CAS  Google Scholar 

  68. Meyer, F., Wilson, K.T., and James, S.P. (2000) Modulation of innate cytokine responses by products of Helicobacter pylori. Infect. Immun., 68, 6265–6272.

    Article  PubMed  CAS  Google Scholar 

  69. Knipp, U., Birkholz, S., Kaup, W., and Opferkuch, W. (1996) Partial characterization of a cell proliferation-inhibiting protein produced by Helicobacter pylori. Infect. Immun., 64, 3491–3496.

    PubMed  CAS  Google Scholar 

  70. Paziak-Domanska, B., Chmiela, M., Jarosinska, A., and Rudnicka, W. (2000) Potential role of CagA in the inhibition of T cell reactivity in Helicobacter pylori infections. Cell Immunol., 202, 136–139.

    Article  PubMed  CAS  Google Scholar 

  71. Ricci, V., Ciacci, C., Zarrilli, R., Sommi, P., Tummuru, M.K., Del Vecchio, B.C. et al. (1996) Effect of Helicobacter pylori on gastric epithelial cell migration and proliferation in vitro: role of VacA and CagA. Infect. Immun., 64, 2829–2833.

    PubMed  CAS  Google Scholar 

  72. Smoot, D.T., Wynn, Z., Elliott, T.B., Allen, C.R., Mekasha, G., Naab, T. et al. (1999) Effects of Helicobacter pylori on proliferation of gastric epithelial cells in vitro. Am. J. Gastroenterol., 94, 1508–1511.

    Article  PubMed  CAS  Google Scholar 

  73. Rokkas, T., Ladas, S., Liatsos, C., Petridou, E., Papatheodorou, G., Theocharis, S. et al. (1999) Relationship of Helicobacter pylori CagA status to gastric cell proliferation and apoptosis. Dig. Dis. Sci., 44, 487–493.

    Article  PubMed  CAS  Google Scholar 

  74. Kim, C.W., Choi, S.H., Chung, E.J., Lee, M.J., Byun, E.K., Ryu, M.H. et al. (1999) Alteration of signal-transducing molecules and phenotypical characteristics in peripheral blood lymphocytes from gastric carcinoma patients. Pathobiology, 67, 123–128.

    Article  PubMed  CAS  Google Scholar 

  75. Takahashi, A., Kono, K., Amemiya, H., Iizuka, H., Fujii, H., and Matsumoto, Y. (2001) Elevated caspase-3 activity in peripheral blood T cells coexists with increased degree of T-cell apoptosis and down-regulation of TCR zeta molecules in patients with gastric cancer. Clin. Cancer Res., 7, 74–80.

    PubMed  CAS  Google Scholar 

  76. Ishigami, S., Natsugoe, S., Miyazono, F., Tokuda, K., Nakajo, A., Matsumoto, M. et al. (2004) CD3 zeta expression of regional lymph node and peripheral blood lymphocytes in gastric cancer. Anticancer Res., 24, 2123–2126.

    PubMed  CAS  Google Scholar 

  77. Roth, K.A., Kapadia, S.B., Martin, S.M., and Lorenz, R.G. (1999) Cellular immune responses are essential for the development of Helicobacter felis-associated gastric pathology. J. Immunol., 163, 1490–1497.

    PubMed  CAS  Google Scholar 

  78. Mohammadi, M., Nedrud, J., Redline, R., Lycke, N., and Czinn, S.J. (1997) Murine CD4 T-cell response to Helicobacter infection: TH1 cells enhance gastritis and TH2 cells reduce bacterial load. Gastroenterology, 113, 1848–1857.

    Article  PubMed  CAS  Google Scholar 

  79. Nedrud, J.G., Mohammadi, M., Blanchard, T., Redline, R., and Czinn, S.J. (1998) TH1/TH2 lymphocyte responses in Helicobacter infections. In Hunt,R. and Tycgat,S. (eds.) Helicobacter pylori. Mechanisms to clinical cure. Kluwer Academics Publishers, Boston, pp 101–9.

    Chapter  Google Scholar 

  80. Bamford, K.B., Fan, X., Crowe, S.E., Leary, J.F., Gourley, W.K., Luthra, G.K. et al. (1998) Lymphocytes in the human gastric mucosa during Helicobacter pylori have a T helper cell 1 phenotype. Gastroenterology, 114, 482–492.

    Article  PubMed  CAS  Google Scholar 

  81. Lindholm, C., Quiding-Jarbrink, M., Lonroth, H., Hamlet, A., and Svennerholm, A.M. (1998) Local cytokine response in Helicobacter pylori-infected subjects. Infect. Immun., 66, 5964–5971.

    PubMed  CAS  Google Scholar 

  82. Yamaoka, Y., Kodama, T., Kita, M., Imanishi, J., Kashima, K., and Graham, D.Y. (2001) Relation between cytokines and Helicobacter pylori in gastric cancer. Helicobacter., 6, 116–124.

    Article  PubMed  CAS  Google Scholar 

  83. Morris, S.M., Jr. (2004) Recent advances in arginine metabolism. Curr. Opin. Clin. Nutr. Metab Care, 7, 45–51.

    Article  PubMed  CAS  Google Scholar 

  84. Roth, E., Steininger, R., Winkler, S., Langle, F., Grunberger, T., Fugger, R. et al. (1994) L-Arginine deficiency after liver transplantation as an effect of arginase efflux from the graft. Influence on nitric oxide metabolism. Transplantation, 57, 665–669.

    Article  PubMed  CAS  Google Scholar 

  85. Zea, A.H., Rodriguez, P.C., Atkins, M.B., Hernandez, C., Signoretti, S., Zabaleta, J. et al. (2005) Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: a mechanism of tumor evasion. Cancer Res., 65, 3044–3048.

    PubMed  CAS  Google Scholar 

  86. Rodriguez, P.C., Quiceno, D.G., Zabaleta, J., Ortiz, B., Zea, A.H., Piazuelo, M.B. et al. (2004) Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Res., 64, 5839–5849.

    Article  PubMed  CAS  Google Scholar 

  87. Rodriguez, P.C., Zea, A.H., Culotta, K.S., Zabaleta, J., Ochoa, J.B., and Ochoa, A.C. (2002) Regulation of T cell receptor CD3zeta chain expression by L-arginine. J. Biol. Chem., 277, 21123–21129.

    Article  PubMed  CAS  Google Scholar 

  88. Munder, M., Mollinedo, F., Calafat, J., Canchado, J., Gil-Lamaignere, C., Fuentes, J.M. et al. (2005) Arginase I is constitutively expressed in human granulocytes and participates in fungicidal activity. Blood, 105, 2549–2556.

    Article  PubMed  CAS  Google Scholar 

  89. Munder, M., Schneider, H., Luckner, C., Giese, T., Langhans, C.D., Fuentes, J.M. et al. (2006) Suppression of T-cell functions by human granulocyte arginase. Blood, 108, 1627–1634.

    Article  PubMed  CAS  Google Scholar 

  90. Kropf, P., Baud, D., Marshall, S.E., Munder, M., Mosley, A., Fuentes, J.M. et al. (2007) Arginase activity mediates reversible T cell hyporesponsiveness in human pregnancy. Eur. J. Immunol., 37, 935–945.

    Article  PubMed  CAS  Google Scholar 

  91. Chang, C.I., Liao, J.C., and Kuo, L. (2001) Macrophage arginase promotes tumor cell growth and suppresses nitric oxide-mediated tumor cytotoxicity. Cancer Res., 61, 1100–1106.

    PubMed  CAS  Google Scholar 

  92. Mendez, J.D. and Arreola, M.A. (1992) Effect of L-arginine on pancreatic arginase activity and polyamines in alloxan treated rats. Biochem. Int., 28, 569–575.

    PubMed  CAS  Google Scholar 

  93. Mori, M. and Gotoh, T. (2000) Regulation of nitric oxide production by arginine metabolic enzymes. Biochem. Biophys. Res. Commun., 275, 715–719.

    Article  PubMed  CAS  Google Scholar 

  94. Murray, H.W. and Teitelbaum, R.F. (1992) L-arginine-dependent reactive nitrogen intermediates and the antimicrobial effect of activated human mononuclear phagocytes. J Infect. Dis., 165, 513–517.

    Article  PubMed  CAS  Google Scholar 

  95. Das, P., Lahiri, A., Lahiri, A., and Chakravortty, D. (2010) Modulation of the arginase pathway in the context of microbial pathogenesis: a metabolic enzyme moonlighting as an immune modulator. PLoS. Pathog., 6, e1000899.

    Article  PubMed  CAS  Google Scholar 

  96. Hung, C.Y., Xue, J., and Cole, G.T. (2007) Virulence mechanisms of coccidioides. Ann. N. Y. Acad. Sci., 1111, 225–235.

    Article  PubMed  CAS  Google Scholar 

  97. Luiking, Y.C., Poeze, M., Dejong, C.H., Ramsay, G., and Deutz, N.E. (2004) Sepsis: an arginine deficiency state? Crit Care Med., 32, 2135–2145.

    Article  PubMed  CAS  Google Scholar 

  98. Luiking, Y.C., Poeze, M., Ramsay, G., and Deutz, N.E. (2005) The role of arginine in infection and sepsis. JPEN J Parenter. Enteral Nutr., 29, S70–S74.

    Article  PubMed  CAS  Google Scholar 

  99. Molnar, B., Galamb, O., Sipos, F., Leiszter, K., and Tulassay, Z. (2010) Molecular pathogenesis of Helicobacter pylori infection: the role of bacterial virulence factors. Dig. Dis., 28, 604–608.

    Article  PubMed  Google Scholar 

  100. Mori, M. and Gotoh, T. (2004) Arginine metabolic enzymes, nitric oxide and infection. J Nutr., 134, 2820S–2825S.

    PubMed  CAS  Google Scholar 

  101. Wanasen, N. and Soong, L. (2008) L-arginine metabolism and its impact on host immunity against Leishmania infection. Immunol. Res., 41, 15–25.

    Article  PubMed  CAS  Google Scholar 

  102. Mendz, G.L., Holmes, E.M., and Ferrero, R.L. (1998) In situ characterization of Helicobacter pylori arginase. Biochim. Biophys. Acta, 1388, 465–477.

    Article  PubMed  CAS  Google Scholar 

  103. Lewis, N.D., Asim, M., Barry, D.P., Singh, K., de, S.T., Boucher, J.L. et al. (2010) Arginase II restricts host defense to Helicobacter pylori by attenuating inducible nitric oxide synthase translation in macrophages. J Immunol., 184, 2572–2582.

    Article  PubMed  CAS  Google Scholar 

  104. Gobert, A.P., Cheng, Y., Wang, J.Y., Boucher, J.L., Iyer, R.K., Cederbaum, S.D. et al. (2002) Helicobacter pylori induces macrophage apoptosis by activation of arginase II. J Immunol., 168, 4692–4700.

    PubMed  CAS  Google Scholar 

  105. Lewis, N.D., Asim, M., Barry, D.P., de, S.T., Singh, K., Piazuelo, M.B. et al. (2011) Immune Evasion by Helicobacter pylori Is Mediated by Induction of Macrophage Arginase II. J Immunol., 186, 3632–3641.

    Article  PubMed  CAS  Google Scholar 

  106. Hoffman, S.M. and Fleming, S.D. (2010) Natural Helicobacter infection modulates mouse intestinal muscularis macrophage responses. Cell Biochem. Funct., 28, 686–694.

    Article  PubMed  CAS  Google Scholar 

  107. el-Zimaity, H.M. and Graham, D.Y. (2001) Ultrastructural evidence of in vivo phagocytosis of Helicobacter pylori. Ultrastruct. Pathol., 25, 159.

    Article  PubMed  CAS  Google Scholar 

  108. Zu, Y., Cassai, N.D., and Sidhu, G.S. (2000) Light microscopic and ultrastructural evidence of in vivo phagocytosis of Helicobacter pylori by neutrophils. Ultrastruct. Pathol., 24, 319–323.

    Article  PubMed  CAS  Google Scholar 

  109. Ozbek, A., Ozbek, E., Dursun, H., Kalkan, Y., and Demirci, T. (2010) Can Helicobacter pylori invade human gastric mucosa?: an in vivo study using electron microscopy, immunohistochemical methods, and real-time polymerase chain reaction. J Clin. Gastroenterol., 44, 416–422.

    PubMed  Google Scholar 

  110. Ramarao, N., Gray-Owen, S.D., Backert, S., and Meyer, T.F. (2000) Helicobacter pylori inhibits phagocytosis by professional phagocytes involving type IV secretion components. Mol. Microbiol., 37, 1389–1404.

    Article  PubMed  CAS  Google Scholar 

  111. Allen, L.A., Schlesinger, L.S., and Kang, B. (2000) Virulent strains of Helicobacter pylori demonstrate delayed phagocytosis and stimulate homotypic phagosome fusion in macrophages. J Exp. Med., 191, 115–128.

    Article  PubMed  CAS  Google Scholar 

  112. Zheng, P.Y. and Jones, N.L. (2003) Helicobacter pylori strains expressing the vacuolating cytotoxin interrupt phagosome maturation in macrophages by recruiting and retaining TACO (coronin 1) protein. Cell Microbiol., 5, 25–40.

    Article  PubMed  CAS  Google Scholar 

  113. Ramarao, N. and Meyer, T.F. (2001) Helicobacter pylori resists phagocytosis by macrophages: quantitative assessment by confocal microscopy and fluorescence-activated cell sorting. Infect. Immun., 69, 2604–2611.

    Article  PubMed  CAS  Google Scholar 

  114. Wang, Y.H., Wu, J.J., and Lei, H.Y. (2009) When Helicobacter pylori invades and replicates in the cells. Autophagy., 5, 540–542.

    Article  PubMed  CAS  Google Scholar 

  115. Turner, D.M., Williams, D.M., Sankaran, D., Lazarus, M., Sinnott, P.J., and Hutchinson, I.V. (1997) An investigation of polymorphism in the interleukin-10 gene promoter. Eur. J. Immunogenet., 24, 1–8.

    Article  PubMed  CAS  Google Scholar 

  116. Rad,R., Dossumbekova, A., Neu, B., Lang, R., Bauer, S., Saur, D. et al. (2004) Cytokine gene polymorphisms influence mucosal cytokine expression, gastric inflammation, and host specific colonisation during Helicobacter pylori infection. Gut, 53, 1082–1089.

    Article  PubMed  CAS  Google Scholar 

  117. Hwang, I.R., Kodama, T., Kikuchi, S., Sakai, K., Peterson, L.E., Graham, D.Y. et al. (2002) Effect of interleukin 1 polymorphisms on gastric mucosal interleukin 1beta production in Helicobacter pylori infection. Gastroenterology, 123, 1793–1803.

    Article  PubMed  CAS  Google Scholar 

  118. Pociot, F., Molvig, J., Wogensen, L., Worsaae, H., and Nerup, J. (1992) A TaqI polymorphism in the human interleukin-1 beta (IL-1 beta) gene correlates with IL-1 beta secretion in vitro. Eur. J. Clin. Invest, 22, 396–402.

    Article  PubMed  CAS  Google Scholar 

  119. Kroeger, K.M., Carville, K.S., and Abraham, L.J. (1997) The −308 tumor necrosis factor-alpha promoter polymorphism effects transcription. Mol. Immunol., 34, 391–399.

    Article  PubMed  CAS  Google Scholar 

  120. Wilson, A.G., Symons, J.A., McDowell, T.L., McDevitt, H.O., and Duff, G.W. (1997) Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc. Natl. Acad. Sci. U. S. A, 94, 3195–3199.

    Article  PubMed  CAS  Google Scholar 

  121. Fishman, D., Faulds, G., Jeffery, R., Mohamed-Ali, V., Yudkin, J.S., Humphries, S. et al. (1998) The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J. Clin. Invest, 102, 1369–1376.

    Article  PubMed  CAS  Google Scholar 

  122. Terry, C.F., Loukaci, V., and Green, F.R. (2000) Cooperative influence of genetic polymorphisms on interleukin 6 transcriptional regulation. J. Biol. Chem., 275, 18138–18144.

    Article  PubMed  CAS  Google Scholar 

  123. Abdallah, A.N., Cucchi-Mouillot, P., Biteau, N., Cassaigne, A., Haras, D., and Iron, A. (1999) Analysis of the polymorphism of the tumour necrosis factor (TNF) gene and promoter and of circulating TNF-alpha levels in heart-transplant patients suffering or not suffering from severe rejection. Eur. J. Immunogenet., 26, 249–255.

    Article  PubMed  CAS  Google Scholar 

  124. Bunnapradist, S. and Jordan, S.C. (2000) The role of cytokines and cytokine gene polymorphism in T-cell activation and allograft rejection. Ann. Acad. Med. Singapore, 29, 412–416.

    PubMed  CAS  Google Scholar 

  125. Hajeer, A.H., Lazarus, M., Turner, D., Mageed, R.A., Vencovsky, J., Sinnott, P. et al. (1998) IL-10 gene promoter polymorphisms in rheumatoid arthritis. Scand. J. Rheumatol., 27, 142–145.

    Article  PubMed  CAS  Google Scholar 

  126. Cabrera, M., Shaw, M.A., Sharples, C., Williams, H., Castes, M., Convit, J. et al. (1995) Polymorphism in tumor necrosis factor genes associated with mucocutaneous leishmaniasis. J. Exp. Med., 182, 1259–1264.

    Article  PubMed  CAS  Google Scholar 

  127. Wilkinson, R.J., Patel, P., Llewelyn, M., Hirsch, C.S., Pasvol, G., Snounou, G. et al. (1999) Influence of polymorphism in the genes for the interleukin (IL)-1 receptor antagonist and IL-1beta on tuberculosis. J. Exp. Med., 189, 1863–1874.

    Article  PubMed  CAS  Google Scholar 

  128. SEER. SEER Cancer Statistics Review 1975-2004. http://seer.cancer.gov/csr/1975_2004/results_merged/topic_inc_trends.pdf. 2004.

  129. Cancer Health Disparities. http://www.cancer.gov/cancertopics/types/disparities. 2008.

  130. Gabriel, S.B., Schaffner, S.F., Nguyen, H., Moore, J.M., Roy, J., Blumenstiel, B. et al. (2002) The structure of haplotype blocks in the human genome. Science, 296, 2225–2229.

    Article  PubMed  CAS  Google Scholar 

  131. Huang, W., He, Y., Wang, H., Wang, Y., Liu, Y., Wang, Y. et al. (2006) Linkage disequilibrium sharing and haplotype-tagged SNP portability between populations. Proc Natl. Acad. Sci. U. S. A, 103, 1418–1421.

    Article  PubMed  CAS  Google Scholar 

  132. Epplein, M., Signorello, L.B., Zheng, W., Peek, R.M., Jr., Michel, A., Williams, S.M. et al. (2011) Race, African ancestry, and Helicobacter pylori infection in a low-income United States population. Cancer Epidemiol. Biomarkers Prev..

    Google Scholar 

  133. Lee, C.G., Gottesman, M.M., Cardarelli, C.O., Ramachandra, M., Jeang, K.T., Ambudkar, S.V. et al. (1998) HIV-1 protease inhibitors are substrates for the MDR1 multidrug transporter. Biochemistry, 37, 3594–3601.

    Article  PubMed  CAS  Google Scholar 

  134. Lee, C.G. and Gottesman, M.M. (1998) HIV-1 protease inhibitors and the MDR1 multidrug transporter. J. Clin. Invest, 101, 287–288.

    Article  PubMed  CAS  Google Scholar 

  135. Balram, C., Sharma, A., Sivathasan, C., and Lee, E.J. (2003) Frequency of C3435T single nucleotide MDR1 genetic polymorphism in an Asian population: phenotypic-genotypic correlates. Br. J. Clin. Pharmacol., 56, 78–83.

    Article  PubMed  CAS  Google Scholar 

  136. Hitzl, M., Drescher, S., van der, K.H., Schaffeler, E., Fischer, J., Schwab, M. et al. (2001) The C3435T mutation in the human MDR1 gene is associated with altered efflux of the P-glycoprotein substrate rhodamine 123 from CD56+ natural killer cells. Pharmacogenetics, 11, 293–298.

    Article  PubMed  CAS  Google Scholar 

  137. Hoffmeyer, S., Burk, O., von, R.O., Arnold, H.P., Brockmoller, J., Johne, A. et al. (2000) Functional polymorphisms of the human multidrug-resistance gene: multiple sequence variations and correlation of one allele with P-glycoprotein expression and activity in vivo. Proc. Natl. Acad. Sci. U. S. A, 97, 3473–3478.

    Article  PubMed  CAS  Google Scholar 

  138. Tanabe, M., Ieiri, I., Nagata, N., Inoue, K., Ito, S., Kanamori, Y. et al. (2001) Expression of P-glycoprotein in human placenta: relation to genetic polymorphism of the multidrug resistance (MDR)-1 gene. J. Pharmacol. Exp. Ther., 297, 1137–1143.

    PubMed  CAS  Google Scholar 

  139. Kim, R.B., Leake, B.F., Choo, E.F., Dresser, G.K., Kubba, S.V., Schwarz, U.I. et al. (2001) Identification of functionally variant MDR1 alleles among European Americans and African Americans. Clin. Pharmacol. Ther., 70, 189–199.

    Article  PubMed  CAS  Google Scholar 

  140. Sakaeda, T., Nakamura, T., Horinouchi, M., Kakumoto, M., Ohmoto, N., Sakai, T. et al. (2001) MDR1 genotype-related pharmacokinetics of digoxin after single oral administration in healthy Japanese subjects. Pharm. Res., 18, 1400–1404.

    Article  PubMed  CAS  Google Scholar 

  141. Fellay, J., Marzolini, C., Meaden, E.R., Back, D.J., Buclin, T., Chave, J.P. et al. (2002) Response to antiretroviral treatment in HIV-1-infected individuals with allelic variants of the multidrug resistance transporter 1: a pharmacogenetics study. Lancet, 359, 30–36.

    Article  PubMed  CAS  Google Scholar 

  142. von, A.N., Richter, M., Grupp, C., Ringe, B., Oellerich, M., and Armstrong, V.W. (2001) No influence of the MDR-1 C3435T polymorphism or a CYP3A4 promoter polymorphism (CYP3A4-V allele) on dose-adjusted cyclosporin A trough concentrations or rejection incidence in stable renal transplant recipients. Clin. Chem., 47, 1048–1052.

    Google Scholar 

  143. Tang, K., Ngoi, S.M., Gwee, P.C., Chua, J.M., Lee, E.J., Chong, S.S. et al. (2002) Distinct haplotype profiles and strong linkage disequilibrium at the MDR1 multidrug transporter gene locus in three ethnic Asian populations. Pharmacogenetics, 12, 437–450.

    Article  PubMed  CAS  Google Scholar 

  144. Machado, J.C., Pharoah, P., Sousa, S., Carvalho, R., Oliveira, C., Figueiredo, C. et al. (2001) Interleukin 1B and interleukin 1RN polymorphisms are associated with increased risk of gastric carcinoma. Gastroenterology, 121, 823–829.

    Article  PubMed  CAS  Google Scholar 

  145. Sicinschi, L.A., Lopez-Carrillo, L., Camargo, M.C., Correa, P., Sierra, R.A., Henry, R.R. et al. (2006) Gastric cancer risk in a Mexican population: role of Helicobacter pylori CagA positive infection and polymorphisms in interleukin-1 and −10 genes. Int. J. Cancer, 118, 649–657.

    Article  PubMed  CAS  Google Scholar 

  146. Xue, H., Lin, B., Ni, P., Xu, H., and Huang, G. (2010) Interleukin-1B and interleukin-1 RN polymorphisms and gastric carcinoma risk: a meta-analysis. J Gastroenterol. Hepatol., 25, 1604–1617.

    Article  PubMed  Google Scholar 

  147. Wang, P., Xia, H.H., Zhang, J.Y., Dai, L.P., Xu, X.Q., and Wang, K.J. (2007) Association of interleukin-1 gene polymorphisms with gastric cancer: a meta-analysis. Int. J Cancer, 120, 552–562.

    Article  PubMed  CAS  Google Scholar 

  148. Camargo, M.C., Mera, R., Correa, P., Peek, R.M., Jr., Fontham, E.T., Goodman, K.J. et al. (2006) Interleukin-1beta and interleukin-1 receptor antagonist gene polymorphisms and gastric cancer: a meta-analysis. Cancer Epidemiol. Biomarkers Prev., 15, 1674–1687.

    Article  PubMed  CAS  Google Scholar 

  149. Persson, C., Canedo, P., Machado, J.C., El-Omar, E.M., and Forman, D. (2011) Polymorphisms in inflammatory response genes and their association with gastric cancer: A HuGE systematic review and meta-analyses. Am. J Epidemiol., 173, 259–270.

    Article  PubMed  Google Scholar 

  150. Beales, I.L. and Calam, J. (1998) Interleukin 1 beta and tumour necrosis factor alpha inhibit acid secretion in cultured rabbit parietal cells by multiple pathways. Gut, 42, 227–234.

    Article  PubMed  CAS  Google Scholar 

  151. Chen, H., Wilkins, L.M., Aziz, N., Cannings, C., Wyllie, D.H., Bingle, C. et al. (2006) Single nucleotide polymorphisms in the human interleukin-1B gene affect transcription according to haplotype context. Hum. Mol. Genet., 15, 519–529.

    Article  PubMed  CAS  Google Scholar 

  152. Arend, W.P., Malyak, M., Guthridge, C.J., and Gabay, C. (1998) Interleukin-1 receptor antagonist: role in biology. Annu. Rev. Immunol., 16, 27–55.

    Article  PubMed  CAS  Google Scholar 

  153. Andus, T., Daig, R., Vogl, D., Aschenbrenner, E., Lock, G., Hollerbach, S. et al. (1997) Imbalance of the interleukin 1 system in colonic mucosa--association with intestinal inflammation and interleukin 1 receptor antagonist (corrected) genotype 2. Gut, 41, 651–657.

    Article  PubMed  CAS  Google Scholar 

  154. Tountas, N.A., Casini-Raggi, V., Yang, H., Di Giovine, F.S., Vecchi, M., Kam, L. et al. (1999) Functional and ethnic association of allele 2 of the interleukin-1 receptor antagonist gene in ulcerative colitis. Gastroenterology, 117, 806–813.

    Article  PubMed  CAS  Google Scholar 

  155. Shih, C.M., Lee, Y.L., Chiou, H.L., Chen, W., Chang, G.C., Chou, M.C. et al. (2006) Association of TNF-alpha polymorphism with susceptibility to and severity of non-small cell lung cancer. Lung Cancer, 52, 15–20.

    Article  PubMed  Google Scholar 

  156. Zambon, C.F., Basso, D., Navaglia, F., Belluco, C., Falda, A., Fogar, P. et al. (2005) Pro- and anti-inflammatory cytokines gene polymorphisms and Helicobacter pylori infection: interactions influence outcome. Cytokine, 29, 141–152.

    Article  PubMed  CAS  Google Scholar 

  157. Hellmig, S., Fischbach, W., Goebeler-Kolve, M.E., Folsch, U.R., Hampe, J., and Schreiber, S. (2005) A functional promotor polymorphism of TNF-alpha is associated with primary gastric B-Cell lymphoma. Am. J. Gastroenterol., 100, 2644–2649.

    Article  PubMed  CAS  Google Scholar 

  158. Kido, S., Kitadai, Y., Hattori, N., Haruma, K., Kido, T., Ohta, M. et al. (2001) Interleukin 8 and vascular endothelial growth factor—prognostic factors in human gastric carcinomas? Eur. J. Cancer, 37, 1482–1487.

    Article  PubMed  CAS  Google Scholar 

  159. Kitadai, Y., Haruma, K., Mukaida, N., Ohmoto, Y., Matsutani, N., Yasui, W. et al. (2000) Regulation of disease-progression genes in human gastric carcinoma cells by interleukin 8. Clin. Cancer Res., 6, 2735–2740.

    PubMed  CAS  Google Scholar 

  160. Savage, S.A., Abnet, C.C., Mark, S.D., Qiao, Y.L., Dong, Z.W., Dawsey, S.M. et al. (2004) Variants of the IL8 and IL8RB genes and risk for gastric cardia adenocarcinoma and esophageal squamous cell carcinoma. Cancer Epidemiol. Biomarkers Prev., 13, 2251–2257.

    PubMed  CAS  Google Scholar 

  161. Kato, I., Van Doorn, L.J., Canzian, F., Plummer, M., Franceschi, S., Vivas, J. et al. (2006) Host-bacterial interaction in the development of gastric precancerous lesions in a high risk population for gastric cancer in Venezuela. Int. J. Cancer, 119, 1666–1671.

    Article  PubMed  CAS  Google Scholar 

  162. Mege, J.L., Meghari, S., Honstettre, A., Capo, C., and Raoult, D. (2006) The two faces of interleukin 10 in human infectious diseases. Lancet Infect. Dis., 6, 557–569.

    Article  PubMed  CAS  Google Scholar 

  163. Havranek, E., Howell, W.M., Fussell, H.M., Whelan, J.A., Whelan, M.A., and Pandha, H.S. (2005) An interleukin-10 promoter polymorphism may influence tumor development in renal cell carcinoma. J. Urol., 173, 709–712.

    Article  PubMed  CAS  Google Scholar 

  164. Nikolova, P.N., Pawelec, G.P., Mihailova, S.M., Ivanova, M.I., Myhailova, A.P., Baltadjieva, D.N. et al. (2007) Association of cytokine gene polymorphisms with malignant melanoma in Caucasian population. Cancer Immunol. Immunother., 56, 371–379.

    Article  PubMed  CAS  Google Scholar 

  165. Seifart, C., Plagens, A., Dempfle, A., Clostermann, U., Vogelmeier, C., von, W.P. et al. (2005) TNF-alpha, TNF-beta, IL-6, and IL-10 polymorphisms in patients with lung cancer. Dis. Markers, 21, 157–165.

    Article  PubMed  CAS  Google Scholar 

  166. Sakamoto, H., Yoshimura, K., Saeki, N., Katai, H., Shimoda, T., Matsuno, Y. et al. (2008) Genetic variation in PSCA is associated with susceptibility to diffuse-type gastric cancer. Nat. Genet., 40, 730–740.

    Article  PubMed  CAS  Google Scholar 

  167. Lu, Y., Chen, J., Ding, Y., Jin, G., Wu, J., Huang, H. et al. (2010) Genetic variation of PSCA gene is associated with the risk of both diffuse- and intestinal-type gastric cancer in a Chinese population. Int. J Cancer, 127, 2183–2189.

    Article  PubMed  CAS  Google Scholar 

  168. Abnet, C.C., Freedman, N.D., Hu, N., Wang, Z., Yu, K., Shu, X.O. et al. (2010) A shared susceptibility locus in PLCE1 at 10q23 for gastric adenocarcinoma and esophageal squamous cell carcinoma. Nat. Genet., 42, 764–767.

    Article  PubMed  CAS  Google Scholar 

  169. Bird, A. (2002) DNA methylation patterns and epigenetic memory. Genes Dev., 16, 6-21.

    Article  PubMed  CAS  Google Scholar 

  170. Wang, Y. and Leung, F.C. (2004) An evaluation of new criteria for CpG islands in the human genome as gene markers. Bioinformatics., 20, 1170–1177.

    Article  PubMed  CAS  Google Scholar 

  171. Tate, P.H. and Bird, A.P. (1993) Effects of DNA methylation on DNA-binding proteins and gene expression. Curr. Opin. Genet. Dev., 3, 226–231.

    Article  PubMed  CAS  Google Scholar 

  172. Nan, X., Meehan, R.R., and Bird, A. (1993) Dissection of the methyl-CpG binding domain from the chromosomal protein MeCP2. Nucleic Acids Res., 21, 4886–4892.

    Article  PubMed  CAS  Google Scholar 

  173. Prendergast, G.C. and Ziff, E.B. (1991) Methylation-sensitive sequence-specific DNA binding by the c-Myc basic region. Science, 251, 186–189.

    Article  PubMed  CAS  Google Scholar 

  174. Watt, F. and Molloy, P.L. (1988) Cytosine methylation prevents binding to DNA of a HeLa cell transcription factor required for optimal expression of the adenovirus major late promoter. Genes Dev., 2, 1136–1143.

    Article  PubMed  CAS  Google Scholar 

  175. Jones, P.L., Veenstra, G.J., Wade, P.A., Vermaak, D., Kass, S.U., Landsberger, N. et al. (1998) Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat. Genet., 19, 187–191.

    Article  PubMed  CAS  Google Scholar 

  176. Nan, X., Ng, H.H., Johnson, C.A., Laherty, C.D., Turner, B.M., Eisenman, R.N. et al. (1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature, 393, 386–389.

    Article  PubMed  CAS  Google Scholar 

  177. Kim, G.D., Ni, J., Kelesoglu, N., Roberts, R.J., and Pradhan, S. (2002) Co-operation and communication between the human maintenance and de novo DNA (cytosine-5) methyltransferases. EMBO J, 21, 4183–4195.

    Article  PubMed  CAS  Google Scholar 

  178. Okano, M., Bell, D.W., Haber, D.A., and Li, E. (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell, 99, 247–257.

    Article  PubMed  CAS  Google Scholar 

  179. Fan, H., Liu, D., Qiu, X., Qiao, F., Wu, Q., Su, X. et al. (2010) A functional polymorphism in the DNA methyltransferase-3A promoter modifies the susceptibility in gastric cancer but not in esophageal carcinoma. BMC. Med., 8, 12.

    Article  PubMed  CAS  Google Scholar 

  180. Esteller, M. (2002) CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene, 21, 5427–5440.

    Article  PubMed  CAS  Google Scholar 

  181. Yamashita, S., Tsujino, Y., Moriguchi, K., Tatematsu, M., and Ushijima, T. (2006) Chemical genomic screening for methylation-silenced genes in gastric cancer cell lines using 5-aza-2′-deoxycytidine treatment and oligonucleotide microarray. Cancer Sci., 97, 64–71.

    Article  PubMed  CAS  Google Scholar 

  182. Schneider, B.G., Peng, D.F., Camargo, M.C., Piazuelo, M.B., Sicinschi, L.A., Mera, R. et al. (2010) Promoter DNA hypermethylation in gastric biopsies from subjects at high and low risk for gastric cancer. Int. J Cancer, 127, 2588–2597.

    Article  PubMed  CAS  Google Scholar 

  183. Shen, H., Xu, Y., Zheng, Y., Qian, Y., Yu, R., Qin, Y. et al. (2001) Polymorphisms of 5,10-methylenetetrahydrofolate reductase and risk of gastric cancer in a Chinese population: a case-control study. Int. J Cancer, 95, 332–336.

    Article  PubMed  CAS  Google Scholar 

  184. Neves Filho, E.H., Alves, M.K., Lima, V.P., and Rabenhorst, S.H. (2010) MTHFR C677T polymorphism and differential methylation status in gastric cancer: an association with Helicobacter pylori infection. Virchows Arch., 457, 627–633.

    Article  PubMed  CAS  Google Scholar 

  185. Dong, C.X., Deng, D.J., Pan, K.F., Zhang, L., Zhang, Y., Zhou, J. et al. (2009) Promoter methylation of p16 associated with Helicobacter pylori infection in precancerous gastric lesions: a population-based study. Int. J Cancer, 124, 434–439.

    Article  PubMed  CAS  Google Scholar 

  186. Kague, E., Thomazini, C.M., Pardini, M.I., de, C.F., Leite, C.V., and Pinheiro, N.A. (2010) Methylation status of CDH1 gene in samples of gastric mucous from Brazilian patients with chronic gastritis infected by Helicobacter pylori. Arq Gastroenterol., 47, 7–12.

    PubMed  Google Scholar 

  187. Alves, M.K., Lima, V.P., Ferrasi, A.C., Rodrigues, M.A., De Moura Campos Pardini MI, and Rabenhorst, S.H. (2010) CDKN2A promoter methylation is related to the tumor location and histological subtype and associated with Helicobacter pylori flaA(+) strains in gastric adenocarcinomas. APMIS, 118, 297–307.

    Article  PubMed  CAS  Google Scholar 

  188. Chan, A.O., Peng, J.Z., Lam, S.K., Lai, K.C., Yuen, M.F., Cheung, H.K. et al. (2006) Eradication of Helicobacter pylori infection reverses E-cadherin promoter hypermethylation. Gut, 55, 463–468.

    Article  PubMed  CAS  Google Scholar 

  189. Guilford, P., Hopkins, J., Harraway, J., McLeod, M., McLeod, N., Harawira, P. et al. (1998) E-cadherin germline mutations in familial gastric cancer. Nature, 392, 402–405.

    Article  PubMed  CAS  Google Scholar 

  190. Yoo, E.J., Park, S.Y., Cho, N.Y., Kim, N., Lee, H.S., Kim, D. et al. (2010) Influence of IL1B polymorphism on CpG island hypermethylation in Helicobacter pylori-infected gastric cancer. Virchows Arch., 456, 647–652.

    Article  PubMed  CAS  Google Scholar 

  191. McMichael, A.J., McCall, M.G., Hartshorne, J.M., and Woodings, T.L. (1980) Patterns of gastro-intestinal cancer in European migrants to Australia: the role of dietary change. Int. J Cancer, 25, 431–437.

    Article  PubMed  CAS  Google Scholar 

  192. Haenszel, W. and Kurihara, M. (1968) Studies of Japanese migrants. I. Mortality from cancer and other diseases among Japanese in the United States. J Natl. Cancer Inst., 40, 43–68.

    PubMed  CAS  Google Scholar 

  193. Plummer, M., Franceschi, S., and Munoz, N. (2004) Epidemiology of gastric cancer. IARC Sci. Publ.,311–326.

    Google Scholar 

  194. Lunet, N., Valbuena, C., Vieira, A.L., Lopes, C., Lopes, C., David, L. et al. (2007) Fruit and vegetable consumption and gastric cancer by location and histological type: case-control and meta-analysis. Eur. J Cancer Prev., 16, 312–327.

    Article  PubMed  Google Scholar 

  195. Terry, P., Nyren, O., and Yuen, J. (1998) Protective effect of fruits and vegetables on stomach cancer in a cohort of Swedish twins. Int. J Cancer, 76, 35–37.

    Article  PubMed  CAS  Google Scholar 

  196. Jansen, M.C., Bueno-de-Mesquita, H.B., Rasanen, L., Fidanza, F., Menotti, A., Nissinen, A. et al. (1999) Consumption of plant foods and stomach cancer mortality in the seven countries study. Is grain consumption a risk factor? Seven Countries Study Research Group. Nutr. Cancer, 34, 49–55.

    Article  PubMed  CAS  Google Scholar 

  197. Risch, H.A., Jain, M., Choi, N.W., Fodor, J.G., Pfeiffer, C.J., Howe, G.R. et al. (1985) Dietary factors and the incidence of cancer of the stomach. Am. J Epidemiol., 122, 947–959.

    PubMed  CAS  Google Scholar 

  198. Nomura, A.M., Hankin, J.H., Kolonel, L.N., Wilkens, L.R., Goodman, M.T., and Stemmermann, G.N. (2003) Case-control study of diet and other risk factors for gastric cancer in Hawaii (United States). Cancer Causes Control, 14, 547–558.

    Article  PubMed  Google Scholar 

  199. Lagiou, P., Samoli, E., Lagiou, A., Peterson, J., Tzonou, A., Dwyer, J. et al. (2004) Flavonoids, vitamin C and adenocarcinoma of the stomach. Cancer Causes Control, 15, 67–72.

    Article  PubMed  CAS  Google Scholar 

  200. Ramon, J.M., Serra-Majem, L., Cerdo, C., and Oromi, J. (1993) Nutrient intake and gastric cancer risk: a case-control study in Spain. Int. J Epidemiol., 22, 983–988.

    Article  PubMed  CAS  Google Scholar 

  201. Kaaks, R., Tuyns, A.J., Haelterman, M., and Riboli, E. (1998) Nutrient intake patterns and gastric cancer risk: a case-control study in Belgium. Int. J Cancer, 78, 415–420.

    Article  PubMed  CAS  Google Scholar 

  202. Palli, D., Russo, A., and Decarli, A. (2001) Dietary patterns, nutrient intake and gastric cancer in a high-risk area of Italy. Cancer Causes Control, 12, 163–172.

    Article  PubMed  CAS  Google Scholar 

  203. Mayne, S.T., Risch, H.A., Dubrow, R., Chow, W.H., Gammon, M.D., Vaughan, T.L. et al. (2001) Nutrient intake and risk of subtypes of esophageal and gastric cancer. Cancer Epidemiol. Biomarkers Prev., 10, 1055–1062.

    PubMed  CAS  Google Scholar 

  204. De, S.E., Correa, P., Boffetta, P., eo-Pellegrini, H., Ronco, A.L., and Mendilaharsu, M. (2004) Dietary patterns and risk of gastric cancer: a case-control study in Uruguay. Gastric. Cancer, 7, 211–220.

    Article  Google Scholar 

  205. Campos, F., Carrasquilla, G., Koriyama, C., Serra, M., Carrascal, E., Itoh, T. et al. (2006) Risk factors of gastric cancer specific for tumor location and histology in Cali, Colombia. World J Gastroenterol., 12, 5772–5779.

    PubMed  Google Scholar 

  206. Wirth, H.P., Beins, M.H., Yang, M., Tham, K.T., and Blaser, M.J. (1998) Experimental infection of Mongolian gerbils with wild-type and mutant Helicobacter pylori strains. Infect. Immun., 66, 4856–4866.

    PubMed  CAS  Google Scholar 

  207. Dey, A., Yokota, K., Kobayashi, K., Oguma, K., Hirai, Y., and Akagi, T. (1998) Antibody and cytokine responses in Helicobacter pylori-infected various mouse strains. Acta Med. Okayama, 52, 41–48.

    PubMed  CAS  Google Scholar 

  208. Marchetti, M., Arico, B., Burroni, D., Figura, N., Rappuoli, R., and Ghiara, P. (1995) Development of a mouse model of Helicobacter pylori infection that mimics human disease. Science, 267, 1655–1658.

    Article  PubMed  CAS  Google Scholar 

  209. D’Elios, M.M., Manghetti, M., Almerigogna, F., Amedei, A., Costa, F., Burroni, D. et al. (1997) Different cytokine profile and antigen-specificity repertoire in Helicobacter pylori-specific T cell clones from the antrum of chronic gastritis patients with or without peptic ulcer. Eur. J. Immunol., 27, 1751–1755.

    Article  PubMed  Google Scholar 

  210. D’Elios, M.M., Manghetti, M., De, C.M., Costa, F., Baldari, C.T., Burroni, D. et al. (1997) T helper 1 effector cells specific for Helicobacter pylori in the gastric antrum of patients with peptic ulcer disease. J. Immunol., 158, 962–967.

    PubMed  Google Scholar 

  211. Sommer, F., Faller, G., Konturek, P., Kirchner, T., Hahn, E.G., Zeus, J. et al. (1998) Antrum- and corpus mucosa-infiltrating CD4(+) lymphocytes in Helicobacter pylori gastritis display a Th1 phenotype. Infect. Immun., 66, 5543–5546.

    PubMed  CAS  Google Scholar 

  212. Maeda, S., Yoshida, H., Ogura, K., Mitsuno, Y., Hirata, Y., Yamaji, Y. et al. (2000) H. pylori activates NF-kappaB through a signaling pathway involving IkappaB kinases, NF-kappaB-inducing kinase, TRAF2, and TRAF6 in gastric cancer cells. Gastroenterology, 119, 97–108.

    Article  PubMed  CAS  Google Scholar 

  213. Yasumoto, K., Okamoto, S., Mukaida, N., Murakami, S., Mai, M., and Matsushima, K. (1992) Tumor necrosis factor alpha and interferon gamma synergistically induce interleukin 8 production in a human gastric cancer cell line through acting concurrently on AP-1 and NF-kB-like binding sites of the interleukin 8 gene. J. Biol. Chem., 267, 22506–22511.

    PubMed  CAS  Google Scholar 

  214. Mitsuno, Y., Yoshida, H., Maeda, S., Ogura, K., Hirata, Y., Kawabe, T. et al. (2001) Helicobacter pylori induced transactivation of SRE and AP-1 through the ERK signalling pathway in gastric cancer cells. Gut, 49, 18–22.

    Article  PubMed  CAS  Google Scholar 

  215. Karttunen, R.A., Karttunen, T.J., Yousfi, M.M., el-Zimaity, H.M., Graham, D.Y., and el-Zaatari, F.A. (1997) Expression of mRNA for interferon-gamma, interleukin-10, and interleukin-12 (p40) in normal gastric mucosa and in mucosa infected with Helicobacter pylori. Scand. J. Gastroenterol., 32, 22–27.

    Article  PubMed  CAS  Google Scholar 

  216. Ye, G., Barrera, C., Fan, X., Gourley, W.K., Crowe, S.E., Ernst, P.B. et al. (1997) Expression of B7-1 and B7-2 costimulatory molecules by human gastric epithelial cells: potential role in CD4+ T cell activation during Helicobacter pylori infection. J. Clin. Invest, 99, 1628–1636.

    Article  PubMed  CAS  Google Scholar 

  217. Allen, L.A., Schlesinger, L.S., and Kang, B. (2000) Virulent strains of Helicobacter pylori demonstrate delayed phagocytosis and stimulate homotypic phagosome fusion in macrophages. J. Exp. Med., 191, 115–128.

    Article  PubMed  CAS  Google Scholar 

  218. Kuwahara, H., Miyamoto, Y., Akaike, T., Kubota, T., Sawa, T., Okamoto, S. et al. (2000) Helicobacter pylori urease suppresses bactericidal activity of peroxynitrite via carbon dioxide production. Infect. Immun., 68, 4378–4383.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by a NCRR-NIH grant number 149740220B to J. Zabaleta

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jovanny Zabaleta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zabaleta, J. (2012). Multifactorial Etiology of Gastric Cancer. In: Dumitrescu, R., Verma, M. (eds) Cancer Epigenetics. Methods in Molecular Biology, vol 863. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-612-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-612-8_26

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-611-1

  • Online ISBN: 978-1-61779-612-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics