Skip to main content

Epigenetic Markers of Early Tumor Development

  • Protocol
  • First Online:
Cancer Epigenetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 863))

Abstract

Cancer patients’ outcome and survival depends on the early diagnosis of malignant lesions. Several investigation methods used for the prevention and early detection strategies have specific limitations. More recently, epigenetic changes have been considered one of the most promising tools for the early diagnosis of cancer. Some of these epigenetic alterations including promoter hypermethylation of genes like P16INK4a, BRCA1, BRCA2, ERα and RARβ2, APC, and RASSF1A have been associated with early stages of mammary gland tumorigenesis and have been suggested to be included in the models that evaluate individual breast cancer risk. In lung cancer, P16INK4a and MGMT gene hypermethylation was observed in sputum years before clinical manifestation of the squamous cell carcinoma among smokers. Loss of GSTP1 function by DNA hypermethylation together with changes in the methylation levels of repetitive elements like LINE-1 and Sat2 was reported in prostatic preneoplastic lesions. Also, DNA hypermethylation for hMLH1 and MGMT DNA repair genes was reported in precursor lesions to colorectal cancer. These epigenetic alterations may be influenced by factors such as xenoestrogens, folate, and multivitamins. Detection of these changes may help determining cancer susceptibility and early diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chung, W., Kwabi-Addo, B., Ittmann, M., Jelinek, J., Shen, L., Yu, Y., and Issa, J. P. (2008) Identification of novel tumor markers in prostate, colon and breast cancer by unbiased methylation profiling. PLoS One 3, e2079.

    Article  Google Scholar 

  2. Suzuki, M. and Yoshino, I. (2010) Aberrant methylation in non-small cell lung cancer. Surg Today 40, 602–607.

    Article  PubMed  CAS  Google Scholar 

  3. Hinshelwood, R. A. and Clark, S. J. (2008) Breast cancer epigenetics: normal human mammary epithelial cells as a model system. J Mol Med 86, 1315–1328.

    Article  PubMed  Google Scholar 

  4. Tlsty, T. D., Crawford, Y. G., Holst, C. R., Fordyce, C. A., Zhang, J., McDermott, K., Kozakiewicz, K., and Gauthier, M. L. (2004) Genetic and epigenetic changes in mammary epithelial cells may mimic early events in carcinogenesis. J Mammary Gland Biol Neoplasia 9, 263–274.

    Article  PubMed  Google Scholar 

  5. Holst, C. R., Nuovo, G. J., Esteller, M., Chew, K., Baylin, S. B., Herman, J. G., and Tlsty, T. D. (2003) Methylation of p16(INK4a) promoters occurs in vivo in histologically normal human mammary epithelia. Cancer Res 63, 1596–1601.

    PubMed  CAS  Google Scholar 

  6. Parrella, P., Poeta, M. L., Gallo, A. P., Prencipe, M., Scintu, M., Apicella, A., Rossiello, R., Liguoro, G., Seripa, D., et al. (2004) Nonrandom distribution of aberrant promoter methylation of cancer-related genes in sporadic breast tumors. Clin Cancer Res 10, 5349–5354.

    Article  PubMed  CAS  Google Scholar 

  7. Silva, J., Silva, J. M., Dominguez, G., Garcia, J. M., Cantos, B., Rodriguez, R., Larrondo, F. J., Provencio, M., Espana, P., and Bonilla, F. (2003) Concomitant expression of p16INK4a and p14ARF in primary breast cancer and analysis of inactivation mechanisms. J Pathol 199, 289–297.

    Article  PubMed  CAS  Google Scholar 

  8. Tlsty, T. D., Romanov, S. R., Kozakiewicz, B. K., Holst, C. R., Haupt, L. M., and Crawford, Y. G. (2001) Loss of chromosomal integrity in human mammary epithelial cells subsequent to escape from senescence. J Mammary Gland Biol Neoplasia6, 235–243.

    Article  PubMed  CAS  Google Scholar 

  9. Romanov, S. R., Kozakiewicz, B. K., Holst, C. R., Stampfer, M. R., Haupt, L. M., and Tlsty, T. D. (2001) Normal human mammary epithelial cells spontaneously escape senescence and acquire genomic changes. Nature 409, 633–637.

    Article  PubMed  CAS  Google Scholar 

  10. Crawford, Y. G., Gauthier, M. L., Joubel, A., Mantei, K., Kozakiewicz, K., Afshari, C. A., and Tlsty, T. D. (2004) Histologically normal human mammary epithelia with silenced p16(INK4a) overexpress COX-2, promoting a premalignant program. Cancer Cell 5, 263–273.

    Article  PubMed  CAS  Google Scholar 

  11. Reynolds, P. A., Sigaroudinia, M., Zardo, G., Wilson, M. B., Benton, G. M., Miller, C. J., Hong, C., Fridlyand, J., Costello, J. F., and Tlsty, T. D. (2006) Tumor suppressor p16INK4A regulates polycomb-mediated DNA hypermethylation in human mammary epithelial cells. J Biol Chem 281, 24790–24802.

    Article  PubMed  CAS  Google Scholar 

  12. Dumitrescu, R. G. and Cotarla, I. (2005) Understanding breast cancer risk -- where do we stand in 2005? J Cell Mol Med 9, 208–221.

    Article  PubMed  CAS  Google Scholar 

  13. Li, Y., Pan, J., Li, J. L., Lee, J. H., Tunkey, C., Saraf, K., Garbe, J. C., Whitley, M. Z., Jelinsky, S. A., et al. (2007) Transcriptional changes associated with breast cancer occur as normal human mammary epithelial cells overcome senescence barriers and become immortalized. Mol Cancer 6, 7.

    Article  PubMed  Google Scholar 

  14. Berman, H., Zhang, J., Crawford, Y. G., Gauthier, M. L., Fordyce, C. A., McDermott, K. M., Sigaroudinia, M., Kozakiewicz, K., and Tlsty, T. D. (2005) Genetic and epigenetic changes in mammary epithelial cells identify a subpopulation of cells involved in early carcinogenesis. Cold Spring Harb Symp Quant Biol 70, 317–327.

    Article  PubMed  CAS  Google Scholar 

  15. Bean, G. R., Bryson, A. D., Pilie, P. G., Goldenberg, V., Baker, J. C., Jr., Ibarra, C., Brander, D. M., Paisie, C., Case, N. R., et al. (2007) Morphologically normal-appearing mammary epithelial cells obtained from high-risk women exhibit methylation silencing of INK4a/ARF. Clin Cancer Res 13, 6834–6841.

    Article  PubMed  CAS  Google Scholar 

  16. Locke, I., Kote-Jarai, Z., Fackler, M. J., Bancroft, E., Osin, P., Nerurkar, A., Izatt, L., Pichert, G., Gui, G. P., and Eeles, R. A. (2007) Gene promoter hypermethylation in ductal lavage fluid from healthy BRCA gene mutation carriers and mutation-negative controls. Breast Cancer Res 9, R20.

    Article  PubMed  Google Scholar 

  17. Vasilatos, S. N., Broadwater, G., Barry, W. T., Baker, J. C., Jr., Lem, S., Dietze, E. C., Bean, G. R., Bryson, A. D., Pilie, P. G., et al. (2009) CpG island tumor suppressor promoter methylation in non-BRCA-associated early mammary carcinogenesis. Cancer Epidemiol Biomarkers Prev 18, 901–914.

    Article  PubMed  CAS  Google Scholar 

  18. Lewis, C. M., Cler, L. R., Bu, D. W., Zochbauer-Muller, S., Milchgrub, S., Naftalis, E. Z., Leitch, A. M., Minna, J. D., and Euhus, D. M. (2005) Promoter hypermethylation in benign breast epithelium in relation to predicted breast cancer risk. Clin Cancer Res 11, 166–172.

    PubMed  CAS  Google Scholar 

  19. Euhus, D. M., Bu, D., Milchgrub, S., Xie, X. J., Bian, A., Leitch, A. M., and Lewis, C. M. (2008) DNA methylation in benign breast epithelium in relation to age and breast cancer risk. Cancer Epidemio. Biomarkers Prev 17, 1051–1059.

    Article  CAS  Google Scholar 

  20. Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., and Thun, M. J. (2007) Cancer statistics, 2007. CA Cancer J Clin 57, 43–66.

    Article  PubMed  Google Scholar 

  21. Belinsky, S. A. (2005) Silencing of genes by promoter hypermethylation: key event in rodent and human lung cancer. Carcinogenesis 26, 1481–1487.

    Article  PubMed  CAS  Google Scholar 

  22. Belinsky, S. A., Palmisano, W. A., Gilliland, F. D., Crooks, L. A., Divine, K. K., Winters, S. A., Grimes, M. J., Harms, H. J., Tellez, C. S.m et al. (2002) Aberrant promoter methylation in bronchial epithelium and sputum from current and former smokers. Cancer Research 62, 2370–2377.

    Google Scholar 

  23. Belinsky, S. A., Nikula, K. J., Palmisano, W. A., Michels, R., Saccomanno, G., Gabrielson, E., Baylin, S. B., and Herman, J. G. (1998) Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci U S A 95, 11891–11896.

    Article  PubMed  CAS  Google Scholar 

  24. Licchesi, J. D., Westra, W. H., Hooker, C. M., and Herman, J. G. (2008) Promoter hypermethylation of hallmark cancer genes in atypical adenomatous hyperplasia of the lung. Clin Cancer Res 14, 2570–2578.

    Article  PubMed  CAS  Google Scholar 

  25. Palmisano, W. A., Divine, K. K., Saccomanno, G., Gilliland, F. D., Baylin, S. B., Herman, J. G., and Belinsky, S. A. (2000) Predicting lung cancer by detecting aberrant promoter methylation in sputum. Cancer Res 60, 5954–5958.

    PubMed  CAS  Google Scholar 

  26. Belinsky, S. A., Liechty, K. C., Gentry, F. D., Wolf, H. J., Rogers, J., Vu, K., Haney, J., Kennedy, T. C., Hirsch, F. R., et al. (2006) Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort. Cancer Res 66, 3338–3344.

    Article  PubMed  CAS  Google Scholar 

  27. Belinsky, S. A. (2004) Gene-promoter hypermethylation as a biomarker in lung cancer. Nat Rev Cancer 4, 707–717.

    Article  PubMed  CAS  Google Scholar 

  28. Shen, H., Spitz, M. R., Qiao, Y., Guo, Z., Wang, L. E., Bosken, C. H., Amos, C. I., and Wei, Q. (2003) Smoking, DNA repair capacity and risk of nonsmall cell lung cancer. Int J Cancer 107, 84–88.

    Article  PubMed  CAS  Google Scholar 

  29. Leng, S., Stidley, C. A., Willink, R., Bernauer, A., Do, K., Picchi, M. A., Sheng, X., Frasco, M. A., van den, B. D., et al. (2008) Double-strand break damage and associated DNA repair genes predispose smokers to gene methylation. Cancer Res 68, 3049–3056.

    Google Scholar 

  30. Liu, F., Killian, J. K., Yang, M., Walker, R. L., Hong, J. A., Zhang, M., Davis, S., Zhang, Y., Hussain, M., et al. (2010) Epigenomic alterations and gene expression profiles in respiratory epithelia exposed to cigarette smoke condensate. Oncogene 29, 3650–3664.

    Article  PubMed  CAS  Google Scholar 

  31. Nelson, W. G., De Marzo, A. M., DeWeese, T. L., Lin, X., Brooks, J. D., Putzi, M. J., Nelson, C. P., Groopman, J. D., and Kensler, T. W. (2001) Preneoplastic prostate lesions: an opportunity for prostate cancer prevention. AnnN Y Acad Sci 952, 135–144.

    Article  CAS  Google Scholar 

  32. Nelson, W. G., De Marzo, A. M., and DeWeese, T. L. (2001) The molecular pathogenesis of prostate cancer: Implications for prostate cancer prevention. Urology 57, 39–45.

    Article  PubMed  CAS  Google Scholar 

  33. Lin, X., Tascilar, M., Lee, W. H., Vles, W. J., Lee, B. H., Veeraswamy, R., Asgari, K., Freije, D., van, R. B., et al. (2001) GSTP1 CpG island hypermethylation is responsible for the absence of GSTP1 expression in human prostate cancer cells. Am J Pathol 159, 1815–1826.

    Google Scholar 

  34. Ahmed, H. (2010) Promoter Methylation in Prostate Cancer and its Application for the Early Detection of Prostate Cancer Using Serum and Urine Samples. Biomark Cancer 1733.

    Google Scholar 

  35. Nakayama, M., Gonzalgo, M. L., Yegnasubramanian, S., Lin, X., De Marzo, A. M., and Nelson, W. G. (2004) GSTP1 CpG island hypermethylation as a molecular biomarker for prostate cancer. JCell Biochem 91, 540–552.

    Article  CAS  Google Scholar 

  36. Aitchison, A., Warren, A., Neal, D., and Rabbitts, P. (2007) RASSF1A promoter methylation is frequently detected in both pre-malignant and non-malignant microdissected prostatic epithelial tissues. Prostate 67, 638–644.

    Article  PubMed  CAS  Google Scholar 

  37. Troyer, D. A., Lucia, M. S., de Bruine, A. P., Mendez-Meza, R., Baldewijns, M. M., Dunscomb, N., van, E. M., McAskill, T., Bierau, K., et al. (2009) Prostate cancer detected by methylated gene markers in histopathologically cancer-negative tissues from men with subsequent positive biopsies. Cancer Epidemiol Biomarkers Prev 18, 2717–2722.

    Google Scholar 

  38. Cho, N. Y., Kim, J. H., Moon, K. C., and Kang, G. H. (2009) Genomic hypomethylation and CpG island hypermethylation in prostatic intraepithelial neoplasm. Virchows Arch 454, 17–23.

    Article  PubMed  CAS  Google Scholar 

  39. Kim, M. S., Lee, J., and Sidransky, D. (2010) DNA methylation markers in colorectal cancer. Cancer Metastasis Rev 29, 181–206.

    Article  PubMed  CAS  Google Scholar 

  40. Orlando, F. A., Tan, D., Baltodano, J. D., Khoury, T., Gibbs, J. F., Hassid, V. J., Ahmed, B. H., and Alrawi, S. J. (2008) Aberrant crypt foci as precursors in colorectal cancer progression. J Surg Oncol 98, 207–213.

    Article  PubMed  Google Scholar 

  41. Greenspan, E. J., Cyr, J. L., Pleau, D. C., Levine, J., Rajan, T. V., Rosenberg, D. W., and Heinen, C. D. (2007) Microsatellite instability in aberrant crypt foci from patients without concurrent colon cancer. Carcinogenesis 28, 769–776.

    Article  PubMed  CAS  Google Scholar 

  42. Menigatti, M., Truninger, K., Gebbers, J. O., Marbet, U., Marra, G., and Schar, P. (2009) Normal colorectal mucosa exhibits sex- and segment-specific susceptibility to DNA methylation at the hMLH1 and MGMT promoters. Oncogene 28, 899–909.

    Article  PubMed  CAS  Google Scholar 

  43. Wallace, K., Grau, M. V., Levine, A. J., Shen, L., Hamdan, R., Chen, X., Gui, J., Haile, R. W., Barry, E. L., et al. (2010) Association between folate levels and CpG Island hypermethylation in normal colorectal mucosa. Cancer Prev Res (Phila) 3, 1552–1564.

    Article  CAS  Google Scholar 

  44. Balaguer, F., Link, A., Lozano, J. J., Cuatrecasas, M., Nagasaka, T., Boland, C. R., and Goel, A. (2010) Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Res 70, 6609–6618.

    Article  PubMed  CAS  Google Scholar 

  45. Weissman, I. L., Anderson, D. J., and Gage, F. (2001) Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations. Annu Rev Cell Dev Biol 17, 387–403.

    Article  PubMed  CAS  Google Scholar 

  46. Cheng, A. S., Culhane, A. C., Chan, M. W., Venkataramu, C. R., Ehrich, M., Nasir, A., Rodriguez, B. A., Liu, J., Yan, P. S., et al. (2008) Epithelial progeny of estrogen-exposed breast progenitor cells display a cancer-like methylome. Cancer Res 68, 1786–1796.

    Article  PubMed  CAS  Google Scholar 

  47. Hsu, P. Y., Deatherage, D. E., Rodriguez, B. A., Liyanarachchi, S., Weng, Y. I., Zuo, T., Liu, J., Cheng, A. S., and Huang, T. H. (2009) Xenoestrogen-induced epigenetic repression of microRNA-9-3 in breast epithelial cells. Cancer Res 69, 5936–5945.

    Article  PubMed  CAS  Google Scholar 

  48. Prins, G. S., Tang, W. Y., Belmonte, J., and Ho, S. M. (2008) Perinatal exposure to oestradiol and bisphenol A alters the prostate epigenome and increases susceptibility to carcinogenesis. Basic Clin Pharmacol Toxicol 102, 134–138.

    Article  PubMed  CAS  Google Scholar 

  49. Jennings, E. (1995) Folic acid as a cancer-preventing agent. Med Hypotheses 45, 297–303.

    Article  PubMed  CAS  Google Scholar 

  50. Ciappio, E. and Mason, J.B. (2009) Folate and carcinogenesis: mechanisms. In: Folate in Health and Disease (Bailey L & Taylor and Francis LLC eds.).

    Google Scholar 

  51. Xu, X. and Chen, J. (2009) One-carbon metabolism and breast cancer: an epidemiological perspective. J Genet Genomics 36, 203–214.

    Article  PubMed  CAS  Google Scholar 

  52. Miller, J. W., Borowsky, A. D., Marple, T. C., McGoldrick, E. T., llard-Telm, L., Young, L. J., and Green, R. (2008) Folate, DNA methylation, and mouse models of breast tumorigenesis. Nutr Rev 66 Suppl 1, S59–S64.

    Google Scholar 

  53. Ericson, U., Sonestedt, E., Ivarsson, M. I., Gullberg, B., Carlson, J., Olsson, H.. and Wirfalt, E. (2009) Folate intake, methylenetetrahydrofolate reductase polymorphisms, and breast cancer risk in women from the Malmo Diet and Cancer cohort. Cancer Epidemiol Biomarkers Prev 18, 1101–1110.

    Article  PubMed  CAS  Google Scholar 

  54. Kim, Y. I. (2006) Does a high folate intake increase the risk of breast cancer? Nutr Rev 64, 468–475.

    Article  PubMed  Google Scholar 

  55. Larsson, S. C., Giovannucci, E., and Wolk, A. (2007) Folate and risk of breast cancer: a meta-analysis. J Natl Cancer Inst 99, 64–76.

    Article  PubMed  CAS  Google Scholar 

  56. Lewis, S. J., Harbord, R. M., Harris, R., and Smith, G. D. (2006) Meta-analyses of observational and genetic association studies of folate intakes or levels and breast cancer risk. J Natl Cancer Inst 98, 1607–1622.

    Article  PubMed  CAS  Google Scholar 

  57. Ma, E., Iwasaki, M., Junko, I., Hamada, G. S., Nishimoto, I. N., Carvalho, S. M., Motola, J., Jr., Laginha, F. M., and Tsugane, S. (2009) Dietary intake of folate, vitamin B6, and vitamin B12, genetic polymorphism of related enzymes, and risk of breast cancer: a case-control study in Brazilian women. BMC Cancer 9, 122.

    Article  PubMed  Google Scholar 

  58. Mahoney, M. C., Bevers, T., Linos, E., and Willett, W. C. (2008) Opportunities and strategies for breast cancer prevention through risk reduction. CA Cancer J Clin58, 347–371.

    Article  PubMed  Google Scholar 

  59. van, E. M., Weijenberg, M. P., Roemen, G. M., Brink, M., de Bruine, A. P., Goldbohm, R. A., van den Brandt, P. A., Baylin, S. B., De Goeij, A. F., and Herman, J. G. (2003) Effects of dietary folate and alcohol intake on promoter methylation in sporadic colorectal cancer: the Netherlands cohort study on diet and cancer. Cancer Res 63, 3133–3137.

    Google Scholar 

  60. Stidley, C. A., Picchi, M. A., Leng, S., Willink, R., Crowell, R. E., Flores, K. G., Kang, H., Byers, T., Gilliland, F. D., and Belinsky, S. A. (2010) Multivitamins, folate, and green vegetables protect against gene promoter methylation in the aerodigestive tract of smokers. Cancer Res 70, 568–574.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramona G. Dumitrescu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Dumitrescu, R.G. (2012). Epigenetic Markers of Early Tumor Development. In: Dumitrescu, R., Verma, M. (eds) Cancer Epigenetics. Methods in Molecular Biology, vol 863. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-61779-612-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-612-8_1

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-61779-611-1

  • Online ISBN: 978-1-61779-612-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics