Skip to main content

Measuring Dynamic Changes in Histone Modifications and Nucleosome Density during Activated Transcription in Budding Yeast

  • Protocol
  • First Online:
Book cover Chromatin Remodeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 833))

Abstract

Chromatin immunoprecipitation is widely utilized to determine the in vivo binding of factors that regulate transcription. This procedure entails formaldehyde-mediated cross-linking of proteins and isolation of soluble chromatin followed by shearing. The fragmented chromatin is subjected to immunoprecipitation using antibodies against the protein of interest and the associated DNA is identified using quantitative PCR. Since histones are posttranslationally modified during transcription, this technique can be effectively used to determine the changes in histone modifications that occur during transcription. In this paper, we describe a detailed methodology to determine changes in histone modifications in budding yeast that takes into account reductions in nucleosome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Workman JL, Kingston RE (1998) Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annual Review of Biochemistry 67: 545–579.

    Article  PubMed  CAS  Google Scholar 

  2. Williams SK, Tyler JK (2007) Transcriptional regulation by chromatin disassembly and reassembly. Curr Opin Genet Dev 17: 88–93.

    Article  PubMed  CAS  Google Scholar 

  3. Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128: 707–719.

    Article  PubMed  CAS  Google Scholar 

  4. Schwabish MA, Struhl K (2004) Evidence for eviction and rapid deposition of histones upon transcriptional elongation by RNA polymerase II. Mol Cell Biol 24: 10111–10117.

    Article  PubMed  CAS  Google Scholar 

  5. Govind CK, Zhang F, Qiu H, Hofmeyer K, Hinnebusch AG (2007) Gcn5 promotes acetylation, eviction, and methylation of nucleosomes in transcribed coding regions. Mol Cell 25: 31–42.

    Article  PubMed  CAS  Google Scholar 

  6. Kouzarides T (2007) Chromatin Modifications and Their Function. Cell 128: 693–705.

    Article  PubMed  CAS  Google Scholar 

  7. Govind CK, Qiu H, Ginsburg DS, Ruan C, Hofmeyer K, et al. (2010) Phosphorylated Pol II CTD Recruits Multiple HDACs, Including Rpd3C(S), for Methylation-Dependent Deacetylation of ORF Nucleosomes. Molecular Cell 39: 234–246.

    Article  PubMed  CAS  Google Scholar 

  8. Govind CK, Yoon S, Qiu H, Govind S, Hinnebusch AG (2005) Simultaneous recruitment of coactivators by Gcn4p stimulates multiple steps of transcription in vivo. Mol Cell Biol 25: 5626–5638.

    Article  PubMed  CAS  Google Scholar 

  9. Ginsburg DS, Govind CK, Hinnebusch AG (2009) NuA4 Lysine Acetyltransferase Esa1 Is Targeted to Coding Regions and Stimulates Transcription Elongation with Gcn5. Mol Cell Biol 29: 6473–6487.

    Article  PubMed  CAS  Google Scholar 

  10. Selth LA, Sigurdsson S, Svejstrup JQ (2010) Transcript Elongation by RNA Polymerase II. Annual Review of Biochemistry 79: 271–293.

    Article  PubMed  CAS  Google Scholar 

  11. Shahbazian MD, Grunstein M (2007) Functions of Site-Specific Histone Acetylation and Deacetylation. Annual Review of Biochemistry 76: 75–100.

    Article  PubMed  CAS  Google Scholar 

  12. Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, et al. (2005) Histone H3 methylation by Set2 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 123: 581–592.

    Article  PubMed  CAS  Google Scholar 

  13. Keogh MC, Kurdistani SK, Morris SA, Ahn SH, Podolny V, et al. (2005) Cotranscriptional set2 methylation of histone H3 lysine 36 recruits a repressive Rpd3 complex. Cell 123: 593–605.

    Article  PubMed  CAS  Google Scholar 

  14. Kim T, Buratowski S (2009) Dimethylation of H3K4 by Set1 Recruits the Set3 Histone Deacetylase Complex to 5′ Transcribed Regions. Cell 137: 259–272.

    Article  PubMed  CAS  Google Scholar 

  15. Smith E, Shilatifard A (2010) The Chromatin Signaling Pathway: Diverse Mechanisms of Recruitment of Histone-Modifying Enzymes and Varied Biological Outcomes. Molecular Cell 40: 689–701.

    Article  PubMed  CAS  Google Scholar 

  16. Lee C-K, Shibata Y, Rao B, Strahl BD, Lieb JD (2004) Evidence for nucleosome depletion at active regulatory regions genome-wide. Nat Genet 36: 900–905.

    Article  PubMed  CAS  Google Scholar 

  17. Sekinger EA, Moqtaderi Z, Struhl K (2005) Intrinsic Histone-DNA Interactions and Low Nucleosome Density Are Important for Preferential Accessibility of Promoter Regions in Yeast. Molecular Cell 18: 735–748.

    Article  PubMed  CAS  Google Scholar 

  18. Kuo M-H, Allis CD (1999) In Vivo Cross-Linking and Immunoprecipitation for Studying Dynamic Protein:DNA Associations in a Chromatin Environment. Methods 19: 425–433.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chhabi K. Govind .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Govind, C.K., Ginsburg, D., Hinnebusch, A.G. (2012). Measuring Dynamic Changes in Histone Modifications and Nucleosome Density during Activated Transcription in Budding Yeast. In: Morse, R. (eds) Chromatin Remodeling. Methods in Molecular Biology, vol 833. Humana Press. https://doi.org/10.1007/978-1-61779-477-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-477-3_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-476-6

  • Online ISBN: 978-1-61779-477-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics