Skip to main content

Formation of Nondegradable Forked Ubiquitin Conjugates by Ring-Finger Ligases and Its Prevention by S5a

  • Protocol
  • First Online:
Book cover Ubiquitin Family Modifiers and the Proteasome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 832))

Abstract

The biological role and fates of ubiquitin (Ub) conjugates are determined by the nature of the ubiquitin chain formed on the protein. Recently, we reported that Ring-finger and U-box ubiquitin ligases (E3s), when functioning with different E2s, synthesize different types of ubiquitin chains on the same substrate, and with UbcH5, form a novel type of chain that is resistant to degradation and deubiquitination by 26S proteasomes. Analysis by mass spectrometry demonstrated that these chains are forked; i.e., two Ub moieties are linked to neighboring lysines on the proximal Ub. In an effort to find the cellular mechanisms that protect against the generation of such nondegradable Ub conjugates, we discovered that the presence of S5a (Rpn10) or a GST-fusion of S5a’s UIM domains in a ubiquitination reaction led to the formation of conjugates that were rapidly degraded. Mass spectrometry revealed that S5a and GST-UIM prevent the formation of Ub forks without affecting the synthesis of standard isopeptide linkages. S5a is an abundant Ub-binding UIM protein present in the 26S proteasome and free in the cell. Preventing forked chain formation appears to be one role of free S5a. The forked Ub chains bind poorly to 26S proteasomes, unlike homogeneous Ub chains containing K63 or K48 linkages and chains synthesized with S5a present. Thus, S5a (and presumably some other cellular UIM-proteins) functions like a molecular chaperone with certain E2–E3 pairs to ensure synthesis of efficiently degraded nonforked ubiquitin conjugates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chau V, Tobias JW, Bachmair A et al (1989) A multiubiquitin chain is confined to specific lysine in a targeted short-lived protein. Science 243:1576–1583.

    Article  PubMed  CAS  Google Scholar 

  2. Gregori L, Poosch MS, Cousins G, Chau V (1990) A uniform isopeptide-linked multiubiquitin chain is sufficient to target substrate for degradation in ubiquitin-mediated proteolysis. J Biol Chem 265:8354–8357.

    PubMed  CAS  Google Scholar 

  3. Wu-Baer F, Lagrazon K, Yuan W, Baer R (2003) The BRCA1/BARD1 heterodimer assembles polyubiquitin chains through an unconventional linkage involving lysine residue K6 of ubiquitin. J Biol Chem 278:34743–34746.

    Article  PubMed  CAS  Google Scholar 

  4. Goldberg AL (2003) Protein degradation and protection against misfolded or damaged proteins. Nature 426:895–899.

    Article  PubMed  CAS  Google Scholar 

  5. Hershko A, Ciechanover A (1998) The ubiquitin system. Annu Rev Biochem 67:425–479.

    Article  PubMed  CAS  Google Scholar 

  6. Pickart CM, Cohen RE (2004) Proteasomes and their kin: proteases in the machine age. Nat Rev Mol Cell Biol 5:177–187.

    Article  PubMed  CAS  Google Scholar 

  7. Johnson ES, Ma PC, Ota IM, Varshavsky A (1995) A proteolytic pathway that recognizes ubiquitin as a degradation signal. J Biol Chem 270:17442–17456.

    Article  PubMed  CAS  Google Scholar 

  8. Deng L, Wang C, Spencer E et al (2000) Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103:351–361.

    Article  PubMed  CAS  Google Scholar 

  9. Hicke L, Dunn R (2003) Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 19:141–172.

    Article  PubMed  CAS  Google Scholar 

  10. Spence J, Sadis S, Haas AL, Finley D (1995) A ubiquitin mutant with specific defects in DNA repair and multiubiquitination. Mol Cell Biol 15:1265–1273.

    PubMed  CAS  Google Scholar 

  11. Barriere H, Nemes C, Du K, Lukacs GL (2007) Plasticity of polyubiquitin recognition as lysosomal targeting signals by the endosomal sorting machinery. Mol Biol Cell 18:3952–3965.

    Article  PubMed  CAS  Google Scholar 

  12. Hoege C, Pfander B, Moldovan GL et al (2002) RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419:135–141.

    Article  PubMed  CAS  Google Scholar 

  13. Lipford JR, Smith GT, Chi Y, Deshaies RJ (2005) A putative stimulatory role for activator turnover in gene expression. Nature 438:113–116.

    Article  PubMed  CAS  Google Scholar 

  14. Kim HT, Kim KP, Lledias F et al (2007) Certain Pairs of Ubiquitin-conjugating Enzymes (E2s) and Ubiquitin-Protein Ligases (E3s) Synthesize Nondegradable Forked Ubiquitin Chains Containing All Possible Isopeptide Linkages. J Biol Chem 282:17375–17386.

    Article  PubMed  CAS  Google Scholar 

  15. Peng J, Schwartz D, Elias JE et al (2003) A proteomics approach to understanding protein ubiquitination. Nat Biotechnol 21:921–926.

    Article  PubMed  CAS  Google Scholar 

  16. Peth A, Uchiki T, Goldberg AL (2010) ATP-dependent steps in the binding of ubiquitin conjugates to the 26S proteasome that commit to degradation. Mol Cell 40:671–681.

    Article  PubMed  CAS  Google Scholar 

  17. Kim HT, Kim KP, Uchiki T et al (2009) S5a promotes protein degradation by blocking synthesis of nondegradable forked ubiquitin chains. Embo J 28:1867–1877.

    Article  PubMed  CAS  Google Scholar 

  18. Uchiki T, Kim HT, Zhai B et al (2009) The Ubiquitin-interacting Motif Protein, S5a, Is Ubiquitinated by All Types of Ubiquitin Ligases by a Mechanism Different from Typical Substrate Recognition. J Biol Chem 284:12622–12632.

    Article  PubMed  CAS  Google Scholar 

  19. Deveraux Q, Ustrell V, Pickart C, Rechsteiner M (1994) A 26 S protease subunit that binds ubiquitin conjugates. J Biol Chem 269:7059–7061.

    PubMed  CAS  Google Scholar 

  20. van Nocker S, Deveraux Q, Rechsteiner M, Vierstra RD (1996) Arabidopsis MBP1 gene encodes a conserved ubiquitin recognition component of the 26S proteasome. Proc Natl Acad Sci U S A 93:856–860.

    Article  PubMed  Google Scholar 

  21. van Nocker S, Sadis S, Rubin DM et al (1996) The multiubiquitin-chain-binding protein Mcb1 is a component of the 26S proteasome in Saccharomyces cerevisiae and plays a nonessential, substrate-specific role in protein turnover. Mol Cell Biol 16:6020–6028.

    PubMed  Google Scholar 

  22. Hofmann K, Falquet L (2001) A ubiquitin-interacting motif conserved in components of the proteasomal and lysosomal protein degradation systems. Trends Biochem Sci 26:347–350.

    Article  PubMed  CAS  Google Scholar 

  23. Wang Q, Young P, Walters KJ (2005) Structure of s5a bound to monoubiquitin provides a model for polyubiquitin recognition. J Mol Biol 348:727–739.

    Article  PubMed  CAS  Google Scholar 

  24. David Y, Ziv T, Admon A, Navon A (2010) The E2 ubiquitin-conjugating enzymes direct polyubiquitination to preferred lysines. J Biol Chem 285:8595–8604.

    Article  PubMed  CAS  Google Scholar 

  25. Windheim M, Peggie M, Cohen P (2008) Two different classes of E2 ubiquitin-conjugating enzymes are required for the mono-ubiquitination of proteins and elongation by polyubiquitin chains with a specific topology. Biochem J 409:723–729.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

These studies were supported by a grant from the National Institute of Health (NIGMS 5R01 GM51923) and a Senior Fellowship to ALG from the Ellison Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred L. Goldberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Kim, H.T., Goldberg, A.L. (2012). Formation of Nondegradable Forked Ubiquitin Conjugates by Ring-Finger Ligases and Its Prevention by S5a. In: Dohmen, R., Scheffner, M. (eds) Ubiquitin Family Modifiers and the Proteasome. Methods in Molecular Biology, vol 832. Humana Press. https://doi.org/10.1007/978-1-61779-474-2_45

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-474-2_45

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-473-5

  • Online ISBN: 978-1-61779-474-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics