Skip to main content

Three Decades of Studies to Understand the Functions of the Ubiquitin Family

  • Protocol
  • First Online:
Book cover Ubiquitin Family Modifiers and the Proteasome

Part of the book series: Methods in Molecular Biology ((MIMB,volume 832))

Abstract

Many intracellular proteins are metabolically unstable or can become unstable during their lifetime in a cell. The in vivo half-lives of specific proteins range from less than a minute to many days. Among the functions of intracellular proteolysis are the elimination of misfolded or otherwise abnormal proteins; maintenance of amino acid pools in cells affected by stresses such as starvation; and generation of protein fragments that act as hormones, antigens, or other effectors. One major function of proteolytic pathways is the selective destruction of proteins whose concentrations must vary with time and alterations in the state of a cell. Short in vivo half-lives of such proteins provide a way to generate their spatial gradients and to rapidly adjust their concentration or subunit composition through changes in the rate of their degradation. The regulated (and processive) degradation of intracellular proteins is carried out largely by the ubiquitin–proteasome system (Ub system), in conjunction with autophagy-lysosome pathways. Other contributors to intracellular proteolysis include cytosolic and nuclear proteases, such as caspases, calpains, and separases. They often function as “upstream” components of the Ub system, which destroys protein fragments that had been produced by these (nonprocessive) proteases. Ub, a 76-residue protein, mediates selective proteolysis through its enzymatic conjugation to proteins that contain primary degradation signals (degrons (1)), thereby marking such proteins for degradation by the 26S proteasome, an ATP-dependent multisubunit protease. Ub conjugation involves the formation of a poly-Ub chain that is linked (in most cases) to the ε-amino group of an internal Lys residue in a substrate protein. Ub is a “secondary” degron, in that Ub is conjugated to proteins that contain primary degradation signals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Varshavsky A (1991) Naming a targeting signal. Cell 64:13–15.

    Article  PubMed  CAS  Google Scholar 

  2. Hershko A, Ciechanover A, Varshavsky A (2000) The ubiquitin system. Nat Med 10:1073–1081.

    Article  Google Scholar 

  3. Varshavsky A (2006) The early history of the ubiquitin field. Pro Sci 15:647–654.

    Article  CAS  Google Scholar 

  4. Varshavsky A (2008) Discovery of cellular regulation by protein degradation. J Biol Chem 283: 34469–34489.

    Article  PubMed  CAS  Google Scholar 

  5. Malynn B A, Ma A (2010) Ubiquitin makes its mark on immune regulation. Immunity 33:843–852.

    Article  PubMed  CAS  Google Scholar 

  6. Liu F, Walters K J (2010) Multitasking with ubiquitin through multivalent interactions. Trends Biochem Sci 35:352–360.

    Article  PubMed  CAS  Google Scholar 

  7. Gallastegui N, Groll M (2010) The 26S proteasome: assembly and function of a destructive machine. Trends Biochem Sci 35:634–642.

    Article  PubMed  CAS  Google Scholar 

  8. Bohn S, Beck F, Sakata E et al. (2010) Structure of the 26S proteasome from Schizosaccharo­myces pombe at subnanometer resolution. Proc Natl Acad Sci USA 107:20992–20997.

    Article  PubMed  CAS  Google Scholar 

  9. Ulrich H D, Walden H (2010) Ubiquitin signalling in DNA replication and repair. Nat Rev Mol Cell Biol 11:479–489.

    Article  PubMed  CAS  Google Scholar 

  10. Stolz A, Wolf D H (2010) Endoplasmic reticulum-associated protein degradation: a chaperone-assisted journey to hell. Biochim Biophys Acta 1803:694–705.

    Article  PubMed  CAS  Google Scholar 

  11. Lu Z, Hunter T (2009) Degradation of activated protein kinases by ubiquitination. Annu Rev Biochem 78:435–475.

    Article  PubMed  CAS  Google Scholar 

  12. Hampton R Y, Garza R M (2009) Protein quality control as a strategy for cellular regulation: lessons from ubiquitin-mediated regulation of the sterol pathway. Chem Rev 109:1561–1574.

    Article  PubMed  CAS  Google Scholar 

  13. Grabbe C, Dikic I (2009) Functional roles of ubiquitin-like domain (ULD) and ubiquitin-binding domain (UBD) containing proteins. Chem Rev 109:1481–1494.

    Article  PubMed  CAS  Google Scholar 

  14. Daulni A, Tansey W P (2009) Damage control: DNA repair, transcription, and the ubiquitin-proteasome system. DNA Repair 8:444–448.

    Article  Google Scholar 

  15. Deshaies R J, Joazeiro C A P (2009) RING domain E3 ubiquitin ligases. Annu Rev Biochem 78:399–434.

    Article  PubMed  CAS  Google Scholar 

  16. Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513.

    Article  PubMed  CAS  Google Scholar 

  17. Reyes-Turcu F E, Ventii K H, Wilkinson K D (2009) Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annu Rev Biochem 78:363–397.

    Article  PubMed  CAS  Google Scholar 

  18. Hirsch C, Gauss R, Horn S C et al. (2009) The ubiquitylation machinery of the endoplasmic reticulum. Nature 458:453–460.

    Article  PubMed  CAS  Google Scholar 

  19. Marques A J, Palanimurugan R, Matias A C et al. (2009) Catalytic mechanism and assembly of the proteasome. Chem Rev 109:1509–1536.

    Article  PubMed  CAS  Google Scholar 

  20. Ravid T, Hochstrasser M (2008) Diversity of degradation signals in the ubiquitin-proteasome system. Nat Rev Mol Cell Biol 9:679–689.

    Article  PubMed  CAS  Google Scholar 

  21. Vembar S S, Brodsky J L (2008) One step at a time: endoplasmic reticulum-associated degradation. Nat Rev Mol Cell Biol 9:944–958.

    Article  PubMed  CAS  Google Scholar 

  22. Dye B T, Schulman B A (2007) Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Annu Rev Biophys Biomol Struct 36:131–150.

    Article  PubMed  CAS  Google Scholar 

  23. Scheffner M, Staub O (2007) HECT E3s and human disease. BMC Biochemistry 8 (Suppl. I):S6.

    Google Scholar 

  24. Scott D C, Monda J K, Grace C R R et al. (2010) A dual mechanism for Rub1 ligation to Cdc53. Mol Cell 39:784–796.

    Article  PubMed  CAS  Google Scholar 

  25. Loeb K R, Haas A L (1992) The interferon-inducible 15-kDa ubiquitin homolog conjugates to intracellular proteins. J Biol Chem 267:7806–7813.

    PubMed  CAS  Google Scholar 

  26. Hochstrasser M (2009) Origin and function of ubiquitin-like proteins. Nature 458:422–429.

    Article  PubMed  CAS  Google Scholar 

  27. Bawa-Khalfe T, Yeh E T (2010) SUMO losing balance: SUMO proteases disrupt SUMO homeostasis to facilitate cancer development and progression. Genes Cancer 1:748–752.

    Article  PubMed  CAS  Google Scholar 

  28. Gareau J R, Lima C D (2010) The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 11:861–871.

    Article  PubMed  CAS  Google Scholar 

  29. Rubenstein E M, Hochstrasser M (2010) Redundancy and variation in the ubiquitin-mediated proteolytic targeting of a transcription factor. Cell Cycle 9:4282–4285.

    Article  PubMed  CAS  Google Scholar 

  30. Merlet J, Burger J, Gomes J E et al. (2009) Regulation of cullin-RING E3 ubiquitin-ligases by neddylation and dimerization. Cell Mol Life Sci 66:1924–1938.

    Article  PubMed  CAS  Google Scholar 

  31. Bergink S, Jentsch S (2009) Principles of ubiquitin and SUMO modifications in DNA repair. Nature 458:461–467.

    Article  PubMed  CAS  Google Scholar 

  32. Burroughs A M, Balaji S, Iyer L M et al. (2007) Small but versatile: the extraordinary functional and structural diversity of the beta-grasp fold. Biol Direct 2:18.

    Article  PubMed  Google Scholar 

  33. Iyer L M, Burroughs A M, Aravind L (2006) The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like beta-grasp domains. Genome Biol 7:R60.

    Article  PubMed  Google Scholar 

  34. Uzunova K, Göttsche K, Miteva M et al. (2007) Ubiquitin-dependent proteolytic control of SUMO conjugates. J Biol Chem 282:34167–34175.

    Article  PubMed  CAS  Google Scholar 

  35. Johnson E S (2004) Protein modification by SUMO. Annu Rev Biochem 73:355–382.

    Article  PubMed  CAS  Google Scholar 

  36. Geoffroy M-C, Hay R T (2010) An additional role for SUMO in ubiquitin-mediated proteolysis. Nat Rev Mol Cell Biol 10:564–568.

    Article  Google Scholar 

  37. Zhao C, Hsiang T Y, Kuo R L et al. (2010) ISG15 conjugation system targets the viral NS1 protein in influenza A virus-infected cells. Proc Natl Acad Sci USA 107:2253–2258.

    Article  PubMed  CAS  Google Scholar 

  38. Durfee L A, Lyon N, Seo K et al. (2010) The ISG15 conjugation system broadly targets newly synthesized proteins: implications for the antiviral function of ISG15. Mol Cell 38:722–732.

    Article  PubMed  CAS  Google Scholar 

  39. Skaug B, Chen Z J (2010) Emerging role of ISG15 in antiviral immunity. Cell 143:187–190.

    Article  PubMed  CAS  Google Scholar 

  40. Bachmair A, Finley D, Varshavsky A (1986) In vivo half-life of a protein is a function of its amino-terminal residue. Science 234:179–186.

    Article  PubMed  CAS  Google Scholar 

  41. Hwang C-S, Shemorry A, Varshavsky A (2010) N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327:973–977.

    Article  PubMed  CAS  Google Scholar 

  42. Arnesen T, Van Damme P, Polevoda B et al. (2009) Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast to humans. Proc Natl Acad Sci USA 106:8157–8162.

    Article  PubMed  CAS  Google Scholar 

  43. Helbig A O, Gauci S, Raijmakers R et al. (2010) Profiling of N-acetylated protein termini provides in-depth insights into the N-terminal nature of the proteome. Mol Cell Proteom 9:928–939.

    Article  CAS  Google Scholar 

  44. Polevoda B, Sherman F (2003) N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins. J Mol Biol 325:595–622.

    Article  PubMed  CAS  Google Scholar 

  45. Goetze S, Qeli E, Mosimann C et al. (2009) Identification and functional characterization of N-terminally acetylated proteins in Drosophila melanogaster. PLoS Biol 7:e1000236.

    Article  PubMed  Google Scholar 

  46. Moerschell R P, Hosokawa Y, Tsunasawa S et al. (1990) The specificities of yeast methionine aminopeptidase and acetylation of amino-terminal methionine in vivo. Processing of altered iso-1-cytochromes created by oligonucleotide transformation. J Biol Chem 265:19638–19643.

    PubMed  CAS  Google Scholar 

  47. Frottin F, Martinez A, Peynot P et al. (2006) The proteomics of N-terminal methionine cleavage. Mol Cell Proteomics 5:2336–2349.

    Article  PubMed  CAS  Google Scholar 

  48. Mullen J R, Kayne P S, Moerschell R P et al. (1989) Identification and characterization of genes and mutants for an N-terminal acetyltransferase from yeast. EMBO J 8:2067–2075.

    PubMed  CAS  Google Scholar 

  49. Park E C, Szostak J W (1992) ARD1 and NAT1 proteins form a complex that has N-terminal acetyltransferase activity. EMBO J 11:2087–2093.

    PubMed  CAS  Google Scholar 

  50. Gautschi M, Just S, Mun A et al. (2003) The yeast N-alpha-acetyltransferase NatA is quantitatively anchored to the ribosome and interacts with nascent polypeptides. Mol Cell Biol 23:7403–7414.

    Article  PubMed  CAS  Google Scholar 

  51. Tasaki T, Kwon Y T (2007) The mammalian N-end rule pathway: new insights into its components and physiological roles. Trends Biochem Sci 32:520–528.

    Article  PubMed  CAS  Google Scholar 

  52. Mogk A, Schmidt R, Bukau B (2007) The N-end rule pathway of regulated proteolysis: prokaryotic and eukaryotic strategies. Trends Cell Biol 17:165–172.

    Article  PubMed  CAS  Google Scholar 

  53. Eisele F, Wolf D H (2008) Degradation of misfolded proteins in the cytoplasm by the ubiquitin ligase Ubr1. FEBS Lett 582:4143–4146.

    Article  PubMed  CAS  Google Scholar 

  54. Heck J W, Cheung S K, Hampton R Y (2010) Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1. Proc Natl Acad Sci USA 107:1106–1111.

    Article  PubMed  CAS  Google Scholar 

  55. Hwang C-S, Varshavsky A (2008) Regulation of peptide import through phosphorylation of Ubr1, the ubiquitin ligase of the N-end rule pathway. Proc Natl Acad Sci USA 105:19188–19193.

    Article  PubMed  CAS  Google Scholar 

  56. Hwang C-S, Shemorry A, Varshavsky A (2009) Two proteolytic pathways regulate DNA repair by co-targeting the Mgt1 alkyguanine transferase. Proc Natl Acad Sci USA 106:2142–2147.

    Article  PubMed  CAS  Google Scholar 

  57. Hu R-G, Wang H, Xia Z et al. (2008) The N-end rule pathway is a sensor of heme. Proc Natl Acad Sci USA 105:76–81.

    Article  PubMed  CAS  Google Scholar 

  58. Hu R-G, Sheng J, Xin Q et al. (2005) The N-end rule pathway as a nitric oxide sensor controlling the levels of multiple regulators. Nature 437:981–986.

    Article  PubMed  CAS  Google Scholar 

  59. Wang H, Piatkov K I, Brower C S et al. (2009) Glutamine-specific N-terminal amidase, a component of the N-end rule pathway. Mol Cell 34:686–695.

    Article  PubMed  CAS  Google Scholar 

  60. Graciet E, Wellmer F (2010) The plant N-end rule pathway: structure and functions. Trends Plant Sci 15:447–453.

    Article  PubMed  CAS  Google Scholar 

  61. Brower C S, Varshavsky A (2009) Ablation of arginylation in the mouse N-end rule pathway: loss of fat, higher metabolic rate, damaged spermatogenesis, and neurological perturbations. PLoS One 4:e7757.

    Article  PubMed  Google Scholar 

  62. Zenker M, Mayerle J, Lerch M M et al. (2005) Deficiency of UBR1, a ubiquitin ligase of the N-end rule pathway, causes pancreatic dysfunction, malformations and mental retardation (Johanson-Blizzard syndrome). Nat Genet 37:1345–1350.

    Article  PubMed  CAS  Google Scholar 

  63. Hwang C-S S, M., Batygin O, Addor M C et al. (2011) Ubiquitin ligases of the N-end rule pathway: assessment of mutations in UBR1 that cause the Johanson-Blizzard syndrome. PLoS One 6:e24925.

    Google Scholar 

  64. Prasad R, Kawaguchi S, Ng D T W (2010) A nucleus-based quality control mechanism for cytosolic proteins. Mol Biol Cell 21:2117–2127.

    Article  PubMed  CAS  Google Scholar 

  65. Kurosaka S, Leu N A, Zhang F et al. (2010) Arginylation-dependent neural crest cell migration is essential for mouse development. PLoS Genet 6:e1000878.

    Article  PubMed  Google Scholar 

  66. Zhang F, Saha S, Shabalina S A et al. (2010) Differential arginylation of actin isoforms is regulated by coding sequence-dependent degradation. Science 329.

    Google Scholar 

  67. Baker R T, Varshavsky A (1991) Inhibition of the N-end rule pathway in living cells. Proc Natl Acad Sci USA 87:2374–2378.

    Google Scholar 

  68. Varshavsky A (1996) The N-end rule: functions, mysteries, uses. Proc Natl Acad Sci USA 93:12142–12149.

    Article  PubMed  CAS  Google Scholar 

  69. Buchler N E, Gerland U, Hwa T (2005) Nonlinear protein degradation and the function of genetic circuits. Proc Natl Acad Sci USA 102:9559–9564.

    Article  PubMed  CAS  Google Scholar 

  70. Lam Y W, Lamond A I, Mann M et al. (2007) Analysis of nucleolar protein dynamics reveals the nuclear degradation of ribosomal proteins. Curr Biol 17:749–760.

    Article  PubMed  CAS  Google Scholar 

  71. Singh R K, Kabbaj M-H M, Paik J et al. (2009) Histone levels are regulated by phosphorylation and ubiquitylation-dependent proteolysis. Nat Cell Biol 11:925–933.

    Article  PubMed  CAS  Google Scholar 

  72. Johnson E S, Gonda D K, Varshavsky A (1990) Cis-trans recognition and subunit-specific degradation of short-lived proteins. Nature 346:287–291.

    Article  PubMed  CAS  Google Scholar 

  73. Hochstrasser M, Varshavsky A (1990) In vivo degradation of a transcriptional regulator: the yeast MATalpha2 repressor. Cell 61:697–708.

    Article  PubMed  CAS  Google Scholar 

  74. Schrader E K, Harstad K G, Matouschek A (2009) Targeting proteins for degradation. Nat Chem Biol 5:815–822.

    Article  PubMed  CAS  Google Scholar 

  75. Collins G A, Lipford J R, Deshaies R J et al. (2010) Gal4 turnover and transcription activation. Nature 461:E7-E8.

    Article  Google Scholar 

  76. Wang X, Muratani M, Tansey W P et al. (2010) Proteolytic instability and the action of nonclassical transcriptional activators. Curr Biol 20:868–871.

    Article  PubMed  CAS  Google Scholar 

  77. Murray A W (2004) Recycling the cell cycle: cyclins revisited. Cell 116:221–234.

    Article  PubMed  CAS  Google Scholar 

  78. Powers E T, Morimoto R I, Dillin A et al. (2009) Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 78:959–991.

    Article  PubMed  CAS  Google Scholar 

  79. Graciet E, Hu R G, Piatkov K et al. (2006) Aminoacyl-transferases and the N-end rule pathway of prokaryotic/eukaryotic specificity in a human pathogen. Proc Natl Acad Sci USA 103:3078–3083.

    Article  PubMed  CAS  Google Scholar 

  80. Finley D, Bartel B, Varshavsky A (1989) The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338:394–401.

    Article  PubMed  CAS  Google Scholar 

  81. Bedford L, Lowe J, Dick L R et al. (2011) Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets. Nat Rev Drug Discov 10:29–46.

    Article  PubMed  CAS  Google Scholar 

  82. Hwang C-S, Shemorry A, Varshavsky A (2010) The N-end rule pathway is mediated by a complex of the RING-type Ubr1 and HECT-type Ufd4 ubiquitin ligases. Nat Cell Biol 12:1177–1185.

    Article  PubMed  CAS  Google Scholar 

  83. Xia Z, Webster A, Du F et al. (2008) Substrate-binding sites of UBR1, the ubiquitin ligase of the N-end rule pathway. J Biol Chem 283:24011–24028.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank R. Hoffman (University of California, San Diego, USA), C. Brower, A. Shemorry, and B. Wadas (California Institute of Technology, USA) for helpful comments on the manuscript. Studies in our laboratory are supported by grants from the National Institutes of Health and the March of Dimes Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Varshavsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Varshavsky, A. (2012). Three Decades of Studies to Understand the Functions of the Ubiquitin Family. In: Dohmen, R., Scheffner, M. (eds) Ubiquitin Family Modifiers and the Proteasome. Methods in Molecular Biology, vol 832. Humana Press. https://doi.org/10.1007/978-1-61779-474-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-474-2_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-473-5

  • Online ISBN: 978-1-61779-474-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics