Skip to main content

Molecular Assays to Investigate Chromatin Changes During DNA Double-Strand Break Repair in Yeast

  • Protocol
  • First Online:
  • 3395 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 745))

Abstract

Multiple types of DNA damage, including bulky adducts, DNA single-strand breaks, and DNA double-strand breaks (DSBs), have deleterious effects on the genomes of eukaryotes. DSBs form normally during a variety of biological processes, such as V–D–J recombination and yeast mating type switching, but unprogrammed DSBs are among the most dangerous types of lesion because if left unrepaired they can lead to loss of genetic material or chromosomal rearrangements. The presence of DSBs leads to a DNA damage response involving activation of cell cycle checkpoints, recruitment of repair proteins, and chromatin remodeling. Because many of the proteins that mediate these processes are evolutionarily conserved, the budding yeast, Saccharomyces cerevisiae, has been used as a model organism to investigate the factors involved in the response to DSBs. Recent research on DSB repair has focused on the barrier that chromatin represents to the repair process. In this article, we describe molecular techniques available to analyze chromatin architecture near a defined DSB in budding yeast. These techniques may be of value to experimentalists who are investigating the role of a novel protein in DSB repair specifically in the context of chromatin.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Haber, J.E. (2000) Partners and pathways repairing a double-strand break. Trends Genet 16, 259–264.

    Article  PubMed  CAS  Google Scholar 

  2. Daley, J.M., Palmbos, P.L., Wu, D., and Wilson, T.E. (2005) Nonhomologous end joining in yeast. Annu Rev Genet 39, 431–451.

    Article  PubMed  CAS  Google Scholar 

  3. Lewis, L.K., and Resnick, M.A. (2000) Tying up loose ends: nonhomologous end-joining in Saccharomyces cerevisiae. Mutat Res 451, 71–89.

    PubMed  CAS  Google Scholar 

  4. Mimitou, E.P., and Symington, L.S. (2009) DNA end resection: many nucleases make light work. DNA Repair (Amst) 8, 983–995.

    Article  CAS  Google Scholar 

  5. Heyer, W.D., Li, X., Rolfsmeier, M., and Zhang, X.P. (2006) Rad54: the Swiss Army knife of homologous recombination? Nucleic Acids Res 34, 4115–4125.

    Article  PubMed  CAS  Google Scholar 

  6. Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F., and Richmond, T.J. (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389, 251–260.

    Article  PubMed  CAS  Google Scholar 

  7. Krogh, B.O., and Symington, L.S. (2004) Recombination proteins in yeast. Annu Rev Genet 38, 233–271.

    Article  PubMed  CAS  Google Scholar 

  8. Downs, J.A. (2007) Chromatin structure and DNA double-strand break responses in cancer progression and therapy. Oncogene 26, 7765–7772.

    Article  PubMed  CAS  Google Scholar 

  9. Rogakou, E.P., Pilch, D.R., Orr, A.H., Ivanova, V.S., and Bonner, W.M. (1998) DNA double-stranded breaks induce histone H2AX phosphorylation on serine 139. J Biol Chem 273, 5858–5868.

    Article  PubMed  CAS  Google Scholar 

  10. Shroff, R., Arbel-Eden, A., Pilch, D., Ira, G., Bonner, W.M., Petrini, J.H., Haber, J.E., and Lichten, M. (2004) Distribution and dynamics of chromatin modification induced by a defined DNA double-strand break. Curr Biol 14, 1703–1711.

    Article  PubMed  CAS  Google Scholar 

  11. Bird, A.W., Yu, D.Y., Pray-Grant, M.G., Qiu, Q., Harmon, K.E., Megee, P.C., Grant, P.A., Smith, M.M., and Christman, M.F. (2002) Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 419, 411–415.

    Article  PubMed  CAS  Google Scholar 

  12. Utley, R.T., Lacoste, N., Jobin-Robitaille, O., Allard, S., and Cote, J. (2005) Regulation of NuA4 histone acetyltransferase activity in transcription and DNA repair by phosphorylation of histone H4. Mol Cell Biol 25, 8179–8190.

    Article  PubMed  CAS  Google Scholar 

  13. Osley, M.A., Tsukuda, T., and Nickoloff, J.A. (2007) ATP-dependent chromatin remodeling factors and DNA damage repair. Mutat Res 618, 65–80.

    PubMed  CAS  Google Scholar 

  14. Chai, B., Huang, J., Cairns, B.R., and Laurent, B.C. (2005) Distinct roles for the RSC and Swi/Snf ATP-dependent chromatin remodelers in DNA double-strand break repair. Genes Dev 19, 1656–1661.

    Article  PubMed  CAS  Google Scholar 

  15. Downs, J.A., Allard, S., Jobin-Robitaille, O., Javaheri, A., Auger, A., Bouchard, N., Kron, S.J., Jackson, S.P., and Cote, J. (2004) Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol Cell 16, 979–990.

    Article  PubMed  CAS  Google Scholar 

  16. Kent, N.A., Chambers, A.L., and Downs, J.A. (2007) Dual chromatin remodeling roles for RSC during DNA double strand break induction and repair at the yeast MAT locus. J Biol Chem 282, 27693–27701.

    Article  PubMed  CAS  Google Scholar 

  17. Liang, B., Qiu, J., Ratnakumar, K., and Laurent, B.C. (2007) RSC functions as an early double-strand-break sensor in the cell’s response to DNA damage. Curr Biol 17, 1432–1437.

    Article  PubMed  CAS  Google Scholar 

  18. Morrison, A.J., Highland, J., Krogan, N.J., Arbel-Eden, A., Greenblatt, J.F., Haber, J.E., and Shen, X. (2004) INO80 and gamma-H2AX interaction links ATP-dependent chromatin remodeling to DNA damage repair. Cell 119, 767–775.

    Article  PubMed  CAS  Google Scholar 

  19. Tsukuda, T., Fleming, A.B., Nickoloff, J.A., and Osley, M.A. (2005) Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature 438, 379–383.

    Article  PubMed  CAS  Google Scholar 

  20. van Attikum, H., Fritsch, O., and Gasser, S.M. (2007) Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO J 26, 4113–4125.

    Article  PubMed  Google Scholar 

  21. Tsukuda, T., Lo, Y.C., Krishna, S., Sterk, R., Osley, M.A., and Nickoloff, J.A. (2009) INO80-dependent chromatin remodeling regulates early and late stages of mitotic homologous recombination. DNA Repair (Amst) 8, 360–369.

    Article  CAS  Google Scholar 

  22. Lee, S.E., Moore, J.K., Holmes, A., Umezu, K., Kolodner, R.D., and Haber, J.E. (1998) Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94, 399–409.

    Article  PubMed  CAS  Google Scholar 

  23. Sugawara, N., and Haber, J.E. (2006) Repair of DNA double strand breaks: in vivo biochemistry. Methods Enzymol 408, 416–429.

    Article  PubMed  CAS  Google Scholar 

  24. Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F., and Cullin, C. (1993) A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 21, 3329–3330.

    Article  PubMed  CAS  Google Scholar 

  25. Gietz, R.D., and Woods, R.A. (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350, 87–96.

    Article  PubMed  CAS  Google Scholar 

  26. Janke, C., Magiera, M.M., Rathfelder, N., Taxis, C., Reber, S., Maekawa, H., Moreno-Borchart, A., Doenges, G., Schwob, E., Schiebel, E., and Knop, M. (2004) A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947–962.

    Article  PubMed  CAS  Google Scholar 

  27. Fleming, A.B., and Pennings, S. (2001) Antagonistic remodelling by Swi-Snf and Tup1-Ssn6 of an extensive chromatin region forms the background for FLO1 gene regulation. EMBO J 20, 5219–5231.

    Article  PubMed  CAS  Google Scholar 

  28. Lee, W., Tillo, D., Bray, N., Morse, R.H., Davis, R.W., Hughes, T.R., and Nislow, C. (2007) A high-resolution atlas of nucleosome occupancy in yeast. Nat Genet 39, 1235–1244.

    Article  PubMed  CAS  Google Scholar 

  29. Nedospasov, S.A., and Georgiev, G.P. (1980) Non-random cleavage of SV40 DNA in the compact minichromosome and free in solution by micrococcal nuclease. Biochem Biophys Res Commun 92, 532–539.

    Article  PubMed  CAS  Google Scholar 

  30. Ravindra, A., Weiss, K., and Simpson, R.T. (1999) High-resolution structural analysis of chromatin at specific loci: Saccharomyces cerevisiae silent mating-type locus HMRa. Mol Cell Biol 19, 7944–7950.

    PubMed  CAS  Google Scholar 

  31. Weiss, K., and Simpson, R.T. (1998) High-resolution structural analysis of chromatin at specific loci: Saccharomyces cerevisiae silent mating type locus HMLα. Mol Cell Biol 18, 5392–5403.

    PubMed  CAS  Google Scholar 

  32. Wu, C. (1980) The 5 ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature 286, 854–860.

    Article  PubMed  CAS  Google Scholar 

  33. Shim, E.Y., Hong, S.J., Oum, J.H., Yanez, Y., Zhang, Y., and Lee, S.E. (2007) RSC mobilizes nucleosomes to improve accessibility of repair machinery to the damaged chromatin. Mol Cell Biol 27, 1602–1613.

    Article  PubMed  CAS  Google Scholar 

  34. Kuo, M.H., and Allis, C.D. (1999) In vivo cross-linking and immunoprecipitation for studying dynamic protein:DNA associations in a chromatin environment. Methods 19, 425–433.

    Article  PubMed  CAS  Google Scholar 

  35. Tsukuda, T., Trujillo, K.M., Martini, E., and Osley, M.A. (2009) Analysis of chromatin remodeling during formation of a DNA double-strand break at the yeast mating type locus. Methods 48, 40–45.

    Article  PubMed  CAS  Google Scholar 

  36. Chen, C.C., Carson, J.J., Feser, J., Tamburini, B., Zabaronick, S., Linger, J., and Tyler, J.K. (2008) Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell 134, 231–243.

    Article  PubMed  CAS  Google Scholar 

  37. Jiang, C., and Pugh, B.F. (2009) A compiled and systematic reference map of nucleosome positions across the Saccharomyces cerevisiae genome. Genome Biol 10, R109.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Supported by grants NIH CA118357 to M.A.O. and NIH F32 CA125955 to S.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mary Ann Osley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Houghtaling, S., Tsukuda, T., Osley, M.A. (2011). Molecular Assays to Investigate Chromatin Changes During DNA Double-Strand Break Repair in Yeast. In: Tsubouchi, H. (eds) DNA Recombination. Methods in Molecular Biology, vol 745. Humana Press. https://doi.org/10.1007/978-1-61779-129-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-129-1_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-128-4

  • Online ISBN: 978-1-61779-129-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics