Skip to main content

Cellular Chemosensitivity Assays: An Overview

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 731))

Abstract

Data on cell viability have long been obtained from in vitro cytotoxicity assays. Today, there is a focus on markers of cell death, and the MTT cell survival assay is widely used for measuring cytotoxic potential of a compound. However, a comprehensive evaluation of cytotoxicity requires additional assays which ­measure short and long-term cytotoxicity. Assays which measure the cytostatic effects of compounds are not less important, particularly for newer anticancer agents. This overview discusses the advantages and disadvantages of different non-clonogenic assays for measuring short and medium-term cytotoxicity. It also discusses clonogenic assays, which accurately measure long-term cytostatic effects of drugs and toxic agents. For certain compounds and cell types, the advent of high throughput, multiparameter, cytotoxicity assays, and gene expression assays have made it possible to predict cytotoxic potency in vivo.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Fellows, M.D., and O’Donovan, M.R. (2007) Cytotoxicity in cultured mammalian cells is a function of the method used to estimate it. Mutagenesis 22, 275–280.

    Article  PubMed  CAS  Google Scholar 

  2. Decker, T., and Lohmann-Matthes, M.L. (1988) A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J. Immunol. Methods 115, 61–69.

    Article  PubMed  CAS  Google Scholar 

  3. Korzeniewski, C., and Callewaert, D.M. (1983) An enzyme-release assay for natural cytotoxicity. J. Immunol. Methods 64, 313–320.

    Article  PubMed  CAS  Google Scholar 

  4. Batchelor, R.H., and Zhou, M. (2004) Use of cellular glucose-6-phosphate dehydrogenase for cell quantitation, applications in cytotoxicity and apoptosis assays. Anal. Biochem. 329, 35–42.

    Article  PubMed  CAS  Google Scholar 

  5. Corey M.J., and Kinders, R.J. Methods and compositions for coupled luminescent assays. United States Patent 6,811,990, issued November 2, 2004.

    Google Scholar 

  6. Corey, M.J., et al, (1997) A Very Sensitive Coupled Luminescent Assay for Cytoxicity and Complement-Mediated Lysis. J. Immunol. Methods 207, 43–51.

    Article  PubMed  CAS  Google Scholar 

  7. Tolnai, S.A. (1975) A method for viable cell count. Meth. Cell Science 1, 37–38.

    Google Scholar 

  8. Ahmed, S.A., Gogal, R.M., Jr, and Walsh, J.E. (1994) A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. J. Immunol. Methods. 170, 211–24.

    Article  PubMed  CAS  Google Scholar 

  9. Perez, R.P., Godwin, A.K., Handel, L.M., and Hamilton, T.C. (1993) A comparison of clonogenic, microtetrazolium and sulforhodamine B assays for determination of cisplatin cytotoxicity in human ovarian carcinoma cell lines. Eur. J. Cancer 29A, 395–399.

    Article  PubMed  CAS  Google Scholar 

  10. Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren J.T., Bokesch, H., Kenney, S., and Boyd, M.R. (1990) A New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst. 82, 1107–1112.

    Article  PubMed  CAS  Google Scholar 

  11. Borenfreund, E., and Puerner, J.A. Toxicity determined in vitro by morphological alterations and neutral red absorption. (1985) Toxicol. Lett. 24, 119–124.

    Google Scholar 

  12. Lu, B., Kerepesi, L., Wisse, L., Hitchman, K., and Meng, Q.R. (2007) Cytotoxicity and gene expression profiles in cell cultures exposed to whole smoke from three types of cigarettes. Toxicol. Sci. 98, 469–478.

    Article  PubMed  CAS  Google Scholar 

  13. Lasarow, R.M., Isseroff, R.R., and Gomez, E.C. (1992) Quantitative in vitro assessment of phototoxicity by a fibroblast-neutral red assay. J. Invest. Dermatol. 98, 725–729.

    Article  PubMed  CAS  Google Scholar 

  14. Xingfen, Y., Wengai, Z., Ying, Y., Xikun, X., Xiaoping, X., and Xiaohua, T. (2007) Preliminary study on neutral red uptake assay as an alternative method for eye irritation test. AATEX 14, Special Issue, 509–514. Proc. 6th World Congress on Alternatives & Animal Use in the Life Sciences August 21–25, Tokyo, Japan

    Google Scholar 

  15. Putnam, K.P., Bombick, D.W., and Doolittle, D.J. (2002) Evaluation of eight in vitro assays for assessing the cytotoxicity of cigarette smoke condensate. Toxicol. In Vitro. 16, 599–607.

    Article  PubMed  CAS  Google Scholar 

  16. Sperandio, S., Poksay, K., de Belle, I., Lafuente, M.J., Liu, B., Nasir, J., and Bredesen, D.E. (2004) Paraptosis: mediation by MAP kinases and inhibition by AIP-1/Alix. Cell Death Differ. 11, 1066–1075.

    Article  PubMed  CAS  Google Scholar 

  17. Roche Applied Science: Apoptosis, Cell Death, and Cell Proliferation Manual: 3rd edition, page 59.

    Google Scholar 

  18. Mosmann, T. (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol. Methods, 65, 55–63.

    Article  PubMed  CAS  Google Scholar 

  19. Scudiero, D.A., Shoemaker, R.H., Paul, K.D., Monks, A., Tierney, S., Nofziger, T.H., Currens, M.J., Seniff, D., and Boyd, M.R. (1988) Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug ­sensitivity in culture using human and other tumor cell lines. Cancer Res. 48, 4827–4833.

    PubMed  CAS  Google Scholar 

  20. Crouch, S.P., Kozlowski, R., Slater, K.J., and Fletcher, J. (1993) The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J. Immunol. Methods. 160, 81–88.

    Article  PubMed  CAS  Google Scholar 

  21. Petty, R.D., Sutherland, L.A., Hunter, E.M., and Cree, I.A. (1995) Comparison of MTT and ATP-based assays for the measurement of viable cell number. J. Biolumin. Chemilumin. 10, 29–34.

    Article  PubMed  CAS  Google Scholar 

  22. Ulukaya, E., Ozdikicioglu, F., Oral, A.Y., and Demirci, M. (2008) The MTT assay yields a relatively lower result of growth inhibition than the ATP assay depending on the chemotherapeutic drugs tested. Toxicol. In Vitro 22, 232–239.

    Article  PubMed  CAS  Google Scholar 

  23. Ng, T.Y., Ngan, H.Y., Cheng, D.K., and Wong, L.C. (2000) Clinical applicability of the ATP cell viability assay as a predictor of chemoresponse in platinum-resistant epithelial ovarian cancer using nonsurgical tumor cell samples. Gynecol. Oncol. 76, 405–408.

    Article  PubMed  CAS  Google Scholar 

  24. Tam, K.F., Ng, T.Y., Liu, S.S., Tsang, P.C.K., Kwong, P.W.K., and Ngan, H.Y.S. (2005) Potential application of the ATP cell viability assay in the measurement of intrinsic radiosensitivity in cervical cancer.Gynecol. Oncol. 96, 765–770.

    Google Scholar 

  25. Roche Applied Science: Apoptosis, Cell Death, and Cell Proliferation Manual: 3rd edition, page 98.

    Google Scholar 

  26. Hynes, J., Hill, R., and Papkovsky, D.B. (2006) The use of a fluorescence-based oxygen uptake assay in the analysis of cytotoxicity. Toxicol. In Vitro 5, 785–792.

    Article  Google Scholar 

  27. Lindhagen, E., Nygren, P., and Larsson, R. (2008) The fluorometric microculture cytotoxicity assay. Nat. Protoc. 3, 1364–1369.

    Article  PubMed  CAS  Google Scholar 

  28. Mickuviene, I., Kirveliene, V., and Juodka, B. (2004) Experimental survey of non-clonogenic viability assays for adherent cells in vitro. Toxicol. In Vitro 18, 639–648.

    Article  PubMed  CAS  Google Scholar 

  29. Ivanova, L., and Uhlig, S. (2008) A bioassay for the simultaneous measurement of metabolic activity, membrane integrity, and lysosomal activity in cell cultures. Anal. Biochem. 379, 16–19.

    Article  PubMed  CAS  Google Scholar 

  30. Elmore, S. (2007) Apoptosis: A Review of Programmed Cell Death. Toxicologic Pathology 35, 495–516.

    Article  PubMed  CAS  Google Scholar 

  31. Gurtu, V., Kain, S.R., and Zhang, G. (1997) Fluorometric and colorimetric detection of caspase activity associated with apoptosis. Anal Biochem, 251, 98–102.

    Article  PubMed  CAS  Google Scholar 

  32. Grabarek, J., Amstad, P., and Darzynkiewicz, Z. (2002). Use of fluorescently labeled ­caspase inhibitors as affinity labels to detect activated caspases. Hum Cell, 15, 1–12.

    Article  PubMed  Google Scholar 

  33. Bossy-Wetzel, E., and Green, D.R. (2000) Detection of apoptosis by Annexin V labeling. Methods Enzymol, 322, 15–18.

    Article  PubMed  CAS  Google Scholar 

  34. Wyllie, A.H. (1980) Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284, 555–556.

    Article  PubMed  CAS  Google Scholar 

  35. Rubin, R.L., Joslin, F.G., and Tan, E.M. (1983) An improved ELISA for anti-native DNA by elimination of interference by anti-histone antibodies. J. Immunol. Methods 63, 359–366.

    Google Scholar 

  36. Kressel, M., and Groscurth, P. (1994) Distinction of apoptotic and necrotic cell death by in situ labelling of fragmented DNA. Cell Tissue Res, 278, 549–556.

    Article  PubMed  CAS  Google Scholar 

  37. Poot, M., and Pierce, R.H. (1999) Detection of changes in mitochondrial function during apoptosis by simultaneous staining with ­multiple fluorescent dyes and correlated ­multiparameter flow cytometry. Cytometry, 35, 311–317.

    Article  PubMed  CAS  Google Scholar 

  38. Scorrano, L., Ashiya, M., Buttle, K., Weiler, S., Oakes, S.A., Mannella, C.A., and Korsmeyer, S.J. (2002) A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev. Cell, 2, 55–59.

    Article  PubMed  CAS  Google Scholar 

  39. Goldstein, J.C., Waterhouse, N.J., Juin, P., Evan, G.I., and Green, D.R. (2000). The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat. Cell Biol. 2, 156–162.

    Article  PubMed  CAS  Google Scholar 

  40. Roper, P.R., and Drewinko, B. (1976) Comparison of in vitro methods to determine drug-induced cell lethality. Cancer Res, 36 (7 PT 1), 2182–2188.

    Google Scholar 

  41. Jarvis, W.D., Fornari, F.A., Traylor, R.S., Martin, H.A., Kramer, L.B., Erukulla, R.K., Bittman, R., and Grant, S. (1996) Induction of apoptosis and potentiation of ceramide-mediated cytotoxicity by sphingoid bases in human myeloid leukemia cells. J. Biol. Chem. 271, 8275–8284.

    Article  PubMed  CAS  Google Scholar 

  42. Yalkinoglu, A.O., Schlehofer, J.R., and zur Hausen, H. (1990). Inhibition of N-methyl-N’-nitro-N-nitrosoguanidine-induced methotrexate and adriamycin resistance in CHO cells by adeno-associated virus type 2. Int. J. Cancer. 45, 1195–1203.

    Google Scholar 

  43. Cordes, N., and Meineke, V. (2003) Cell adhesion-mediated radioresistance (CAM-RR): Extracellular matrix-dependent improvement of cell survival in human tumor and normal cells in vitro. Strahlenther. Onkol. 179, 337–344.

    Article  PubMed  Google Scholar 

  44. Herzog, E., Casey, A., Lyng, F.M., Chambers, G., Byrne, H.J., and Davoren, M. (2007) A new approach to the toxicity testing of carbon-based nanomaterials: the clonogenic assay. Toxicol. Lett. 174, 49–60.

    Article  PubMed  CAS  Google Scholar 

  45. Mirzayans, R., Andrais, B., Scott, A., Tessier, A., and Murray, D. (2007) A sensitive assay for the evaluation of cytotoxicity and its pharmacologic modulation in human solid tumor-derived cell lines exposed to cancer-therapeutic agents. J. Pharm. Pharm. Sci. 10, 298s–311s.

    PubMed  CAS  Google Scholar 

  46. Stroncek, D.F., Jin, P., Wang, E., and Jett, B. (2007) Potency analysis of cellular therapies: the emerging role of molecular assays. J. Transl. Med. 5, 24–29.

    Google Scholar 

  47. Duerst, R.E., and Frantz, C.N. (1985) A ­sensitive assay of cytotoxicity applicable to mixed cell populations. J. Immunol. Methods 82, 39–46.

    Article  PubMed  CAS  Google Scholar 

  48. Frgala, T., Kalous, O., Proffitt, R.T., and Reynolds, C.P. (2007) A fluorescence microplate cytotoxicity assay with a 4-log dynamic range that identifies synergistic drug combinations. Mol. Cancer Ther. 6, 886–897.

    Article  PubMed  CAS  Google Scholar 

  49. Aragon, V., Chao, K., and Dreyfus, L.A. (1997) Effect of cytolethal distending toxin on F-actin assembly and cell division in Chinese hamster ovary cells. Infect Immun. 65, 3774–3780.

    PubMed  CAS  Google Scholar 

  50. Sacks, P.G., Harris, D., and Chou, T.C. (1995) Modulation of growth and proliferation in squamous cell carcinoma by retinoic acid: a rationale for combination therapy with chemotherapeutic agents. Int. J. Cancer 61, 409–415.

    Article  PubMed  CAS  Google Scholar 

  51. Schoonen, W.G., Walter, M.A., Westerink, W.M., and Horbach, G.J. (2009) High-throughput screening for analysis of in vitro toxicity. Mol. Clin. Environ. Toxicol. 99, 401–452.

    Article  CAS  Google Scholar 

  52. Xia, M., Huang. R., Witt, K.L., Southall, N., Fostel, J., Cho, M.H., Jadhav, A., Smith, C.S., Inglese, J., Portier, C.J., Tice, R.R., and Austin, C.P. (2008) Compound cytotoxicity profiling using quantitative high-throughput screening. Environ. Health Perspect. 116, 284–291.

    Article  PubMed  CAS  Google Scholar 

  53. O’Brien, P.J., Irwin, W., Diaz, D., Howard-Cofield, E., Krejsa, C.M., Slaughter, M.R., Gao, B., Kaludercic, N., Angeline, A., Bernardi, P., Brain, P., and Hougham, C. (2006) High concordance of drug-induced human ­hepatotoxicity with in vitro ­cytotoxicity ­measured in a novel cell-based model using high content screening. Arch. Toxicol, 80, 580–604.

    Article  PubMed  Google Scholar 

  54. Yang, S.T., Zhang, X., and Wen, Y. (2008) Microbioreactors for high-throughput cytotoxicity assays. Curr. Opin. Drug. Discov. Devel. 1, 111–127.

    Google Scholar 

  55. Sivaraman, A., Leach, J.K., and Townsend, S., Hogan, B.J., Stolz, D.B., Fry, R., Samson, L.D., Tannenbaum, S.R., and Griffith, L.G. (2005) A microscale in vitro physiological model of the liver: predictive screens for drug metabolism and enzyme induction. Curr. Drug Metab. 6, 569–591.

    Article  PubMed  CAS  Google Scholar 

  56. Lee, M.Y., Kumar, R.A., Sukumaran, S.M., Hogg, M.G., Clark, D.S., and Dordick, J.S. (2008) Three-dimensional cellular microarray for high-throughput toxicology assays. Proc. Natl. Acad. Sci. U. S. A. 105, 59–63.

    Article  PubMed  CAS  Google Scholar 

  57. Baudoin, R., Griscom, L., and Monge, M., et al. (2007) Development of a renal microchip for in vitro distal tubule models. Biotechnol. Prog. 23, 1245–1253.

    PubMed  CAS  Google Scholar 

  58. Walker, G.M., Monteiro-Riviere, N., Rouse, J. and O’Neill, A.T. (2007) A linear dilution microfluidic device for cytotoxicity assays. Lab Chip. 7, 226–232.

    Article  PubMed  CAS  Google Scholar 

  59. Cui, Z. F., Xu, X., Trainor, N., Triffitt, J. T., Urban, J. P. G., and Tirlapur, U. K. (2007) Application of multiple parallel perfused microbioreactors and three-dimensional stem cell culture for toxicity testing. Toxicol. In Vitro. 21, 1318–1324.

    Article  PubMed  CAS  Google Scholar 

  60. Viravaidya, K., Sin, A. and Shuler, M.L. (2004) Development of a microscale cell ­culture analog to probe naphthalene toxicity. Biotechnol. Prog. 20, 316–323.

    Article  PubMed  CAS  Google Scholar 

  61. Li, A.P., Bode, C. and Sakai, Y. (2004) A novel in vitro system, the integrated discrete multiple organ cell culture (IdMOC) system, for the evaluation of human drug toxicity: comparative cytotoxicity of tamoxifen towards normal human cells from five major organs and MCF-7 adenocarcinoma breast cancer cells. Chem. Biol. Interact. 150, 129–136.

    Article  PubMed  CAS  Google Scholar 

  62. Anderson, E.J. and Knothe-Tate, M.L. (2007) Open access to novel dual flow chamber ­technology for in vitro cell mechanotransduction, toxicity and pharmacokinetic studies. BioMedical Engineering Online, 6, 46–57.

    Article  PubMed  Google Scholar 

  63. Gerhold, D., Lu, M., Xu, J., Austin, C., Caskey, C.T., and Rushmore, T. (2001) Monitoring expression of genes involved in drug metabolism and toxicology using DNA microarrays. Physiol. Genomics. 5, 161–170.

    PubMed  CAS  Google Scholar 

  64. Slatter, J.G., Cheng, O., Cornwell, P.D., de Souza, A., Rockett, J., Rushmore, T., Hartley, D., Evers, R., He, Y., Dai, X., Hu, R., Caguyong, M., Roberts, C.J., Castle, J., and Ulrich, R.G. (2006) Microarray-based compendium of hepatic gene expression profiles for prototypical ADME gene-inducing compounds in rats and mice in vivo. Xenobiotica 36, 902–937.

    Article  PubMed  CAS  Google Scholar 

  65. Bartosiewicz, M., Trounstine, M., Barker, D., Johnston, R., and Buckpitt, A. (2000) Development of a toxicological gene array and quantitative assessment of this technology. Arch. Biochem. Biophys. 376, 66–73.

    Article  PubMed  CAS  Google Scholar 

  66. Ishida, S., Shigemoto-Mogami, Y., Kagechika. H., Shudo, K., Ozawa, S., Sawada, J., Ohno, Y., and Inoue, K. (2003) Clinical potential of subclasses of retinoid synergists revealed by gene expression profiling. Mol. Cancer. Ther. 2, 49–58.

    PubMed  CAS  Google Scholar 

  67. Glaysher, S., Yiannakis, D., Gabriel, F.G., Johnson, P., Polak, M.E., Knight, L.A., Goldthorpe, Z., Peregrin, K., Gyi, M., Modi, P., Rahamim, J., Smith, M.E., Amer, K., Addis, B., Poole, M., Narayanan, A., Gulliford, T.J., Andreotti, P.E., and Cree, I.A. (2009) Resistance gene expression determines the in vitro chemosensitivity of non-small cell lung cancer (NSCLC). BMC Cancer 9, 300.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venil N. Sumantran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Sumantran, V.N. (2011). Cellular Chemosensitivity Assays: An Overview. In: Cree, I. (eds) Cancer Cell Culture. Methods in Molecular Biology, vol 731. Humana Press. https://doi.org/10.1007/978-1-61779-080-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-080-5_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-079-9

  • Online ISBN: 978-1-61779-080-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics