Skip to main content

Proteomic Assays for the Detection of Urothelial Cancer

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 641))

Abstract

Bladder cancer is one of the most expensive cancers from diagnosis to death of the patient due to life-long surveillance involving upper tract imaging, urinary cytology, and cystoscopy. Cytology has been historically used in conjunction with cystoscopy to help detect disease that may be missed by routine cystoscopy (e.g., carcinoma in situ and upper tract disease). Urine cytology is highly cytopathologist dependent and has reasonable sensitivity for detecting high grade disease. However, its sensitivity drops precipitously with regard to well-differentiated low grade cancers. Intensive investigations have been undertaken using proteomics to find an alternative to cystoscopy and cytology. Urine proteomic markers currently evaluated critically in the literature include bladder tumor antigen, nuclear matrix protein 22, BLCA-4, hyaluronic acid, hyaluronidase, cytokeratin 8, cytokeratin 18, cytokeratin 19, tissue polypeptide antigen, and tissue polypeptide-specific antigen. Markers used as alternatives to cystoscopy must be accurate with high sensitivity and specificity, cost effective for life-long surveillance, and minimally invasive to minimize the burden to the patient. To date, no proteomic marker has been developed that can replace cystoscopy for the detection of bladder cancer. However, several urinary markers appear to have higher sensitivity albeit lower specificity than cytology and can be used to supplement cystoscopy. Some of those markers are herein described in this chapter. By defining and characterizing the current state of the art in protein based markers, we are poised to evaluate and benchmark newly discovered protein biomarkers that will be isolated through new proteomics based investigations of urine.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Jemal A., Siegel R., Ward E., Murray T., Xu J., Thun M.J. (2007) Cancer statistics, 2007. CA Cancer J. Clin. 57, 43–66.

    Article  PubMed  Google Scholar 

  2. Surveillance, Epidemiology and End Results Database. http://seer.cancer.gov.

  3. Botteman M.F., Pashos C.L., Redaelli A., Laskin B., Hauser R. (2003) The health economics of bladder cancer: a comprehensive review of the published literature. Pharmacoeconomics. 21, 1315–30.

    Article  PubMed  Google Scholar 

  4. Leblanc B., Duclos A.J., Benard F., Cote J., Valiquette L., Paquin J.M., Mauffette F., Faucher R., Perreault J.P. (1999) Long-term follow-up of initial Ta grade 1 transitional cell carcinoma of the bladder. J. Urol. 162, 1946–50.

    Article  CAS  PubMed  Google Scholar 

  5. Zieger K., Wolf H., Olsen P.R., Hojgaard K. (2000) Long-term follow-up of noninvasive bladder tumours (stage Ta): recurrence and progression. BJU Int. 85, 824–8.

    Article  CAS  PubMed  Google Scholar 

  6. Sanders W.R. (1864) Cancer of the bladder: fragments forming urethral plugs discharged in the urine-concentric colloid bodies. Edinburgh Med. J. 10, 273–75.

    Google Scholar 

  7. Dickenson W.H. (1869) Portions of cancerous growth passed by urethra. Trans. Pathol. Soc. London. 20, 233–35.

    Google Scholar 

  8. Papanicolaou G.N., Marshall V.P. (1945)Urine sediment smears as a diagnostic procedure in cancers of the urinary tract. Science. 101, 511–29.

    Google Scholar 

  9. Glatz K., Willi N., Glatz D., Barascud A., Grilli B., Herzog M., Dalquen P., Feichter G., Gasser T.C., Sulser T., Bubendorf L. (2006) An international telecytologic quiz on urinary cytology reveals educational deficits and absence of a commonly used classification system. Am. J. Clin. Pathol. 126, 294–301.

    Article  PubMed  Google Scholar 

  10. Malik S.N., Murphy W.M. (1999) Monitoring patients for bladder neoplasms: what can be expected of urinary cytology consultations in clinical practice. Urology. 54, 62–6.

    Article  CAS  PubMed  Google Scholar 

  11. Habuchi T., Marberger M., Droller M.J., Hemstreet G.P. III, Grossman H.B., Schalken J.A., Schmitz-Drager B.J., Murphy W.M., Bono A.V., Goebell P., Getzenberg R.H., Hautmann S.H., Messing E., Fradet Y., Lokeshwar V.B. (2005) Prognostic markers for bladder cancer: International Consensus Panel on bladder tumor markers. Urology. 66, 64–74.

    Article  PubMed  Google Scholar 

  12. Cheng Z.Z., Corey M.J., Parepalo M., Majno S., Hellwage J., Zipfel P.F., Kinders R.J., Raitanen M., Meri S., Jokiranta T.S. (2005) Complement factor H as a marker for detection of bladder cancer. Clin. Chem. 51, 856–63.

    Article  CAS  PubMed  Google Scholar 

  13. Junnikkala S., Jokiranta T.S., Friese M.A., Jarva H., Zipfel P.F., Meri S. (2000) Exceptional resistance of human H2 glioblastoma cells to complement-mediated killing by expression and utilization of factor H and factor H-like protein 1. J. Immunol. 164, 6075–81.

    CAS  PubMed  Google Scholar 

  14. Sarosdy M.F., Hudson M.A., Ellis W.J., Soloway M.S., deVere White R., Sheinfeld J., Jarowenko M.V., Schellhammer P.F., Schervish E.W., Patel J.V., Chodak G.W., Lamm D.L., Johnson R.D., Henderson M., Adams G., Blumenstein B.A., Thoelke K.R., Pfalzgraf R.D., Murchison H.A., Brunelle S.L. (1997) Improved detection of recurrent bladder cancer using the Bard BTA stat Test. Urology. 50, 349–53.

    Article  CAS  PubMed  Google Scholar 

  15. Raitanen M.P., Hellstrom P., Marttila T., Korhonen H., Talja M., Ervasti J., Tammela T.L., Finnbladder Group. (2001) Effect of intravesical instillations on the human complement factor H related protein (BTA stat) test. Eur. Urol. 40, 422–36.

    Article  CAS  PubMed  Google Scholar 

  16. Thomas L., Leyh H., Marberger M., Bombardieri E., Bassi P., Pagano F., Pansadoro V., Sternberg C.N., Boccon-Gibod L., Ravery V., Le Guludec D., Meulemans A., Conort P., Ishak L. (1999) Multicenter trial of the quantitative BTA TRAK assay in the detection of bladder cancer. Clin. Chem. 45, 472–77.

    CAS  PubMed  Google Scholar 

  17. Giannopoulos A., Manousakas T., Mitropoulos D., Botsoli-Stergiou E., Constantinides C., Giannopoulou M., Choremi-Papadopoulou H. (2001) Comparative evaluation of the BTAstat test, NMP22, and voided urine cytology in the detection of primary and recurrent bladder tumors. J. Urol. 166, 470–75.

    Article  CAS  PubMed  Google Scholar 

  18. Ellis W.J., Blumenstein B.A., Ishak L.M., Enfield D.L. (1997) Clinical evaluation of the BTA TRAK assay and comparison to voided urine cytology and the Bard BTA test in patients with recurrent bladder tumors. The Multi Center Study Group. Urology. 50, 882–7.

    Article  CAS  PubMed  Google Scholar 

  19. Miller T.E., Beausang L.A., Winchell L.F., Lidgard G.P. (1992) Detection of nuclear matrix proteins in serum from cancer patients. Cancer Res. 52, 422–27.

    CAS  PubMed  Google Scholar 

  20. Khanuja P.S., Lehr J.E., Soule H.D., Gehani S.K., Noto A.C., Choudhury S., Chen R., Pienta K.J. (1993) Nuclear matrix proteins in normal and breast cancer cells. Cancer Res. 53, 3394–98.

    CAS  PubMed  Google Scholar 

  21. Keesee S.K., Meneghini M.D., Szaro R.P., Wu Y.J. (1994) Nuclear matrix proteins in human colon cancer. Proc. Natl. Acad. Sci. U.S.A. 91, 1913–16.

    Article  CAS  PubMed  Google Scholar 

  22. Berezney R., Coffey D.S. Identification of a nuclear protein matrix. (1974) Biochem. Biophys. Res. Commun. 60, 1410–17.

    Article  CAS  PubMed  Google Scholar 

  23. Soloway M.S., Briggman V., Carpinito G.A., Chodak G.W., Church P.A., Lamm D.L., Lange P., Messing E., Pasciak R.M., Reservitz G.B., Rukstalis D.B., Sarosdy M.F., Stadler W.M., Thiel R.P., Hayden C.L. (1996) Use of a new tumor marker, urinary NMP22, in the detection of occult or rapidly recurring transitional cell carcinoma of the urinary tract following surgical treatment. J. Urol. 156, 363–67.

    Article  CAS  PubMed  Google Scholar 

  24. Shariat S.F., Marberger M.J., Lotan Y., Sanchez-Carbayo M., Zippe C., Ludecke G., Boman H., Sawczuk I., Friedrich M.G., Casella R., Mian C., Eissa S., Akaza H., Serretta V., Huland H., Hedelin H., Raina R., Miyanaga N., Sagalowsky A.I., Roehrborn C.G., Karakiewicz P.I. (2006) Variability in the performance of nuclear matrix protein 22 for the detection of bladder cancer. J. Urol. 176, 919–26.

    Article  CAS  PubMed  Google Scholar 

  25. Grossman H.B., Messing E., Soloway M., Tomera K., Katz G., Berger Y., Shen Y. (2005) Detection of bladder cancer using a point-of-care proteomic assay. JAMA. 293, 810–16.

    Article  CAS  PubMed  Google Scholar 

  26. Grossman H.B., Soloway M., Messing E., Katz G., Stein B., Kassabian V., Shen Y. (2006) Surveillance for recurrent bladder cancer using a point-of-care proteomic assay. JAMA. 295, 299–305.

    Article  CAS  PubMed  Google Scholar 

  27. Getzenberg R.H., Konety B.R., Oeler T.A., Quigley M.M., Hakam A., Becich M.J., Bahnson R.R. (1996) Bladder cancer-associated nuclear matrix proteins. Cancer Res. 56, 1690–94.

    CAS  PubMed  Google Scholar 

  28. Van Le T.S., Myers J., Konety B.R., Barder T., Getzenberg R.H. (2004) Functional characterization of the bladder cancer marker, BLCA-4. Clin. Cancer Res. 10, 1384–91.

    Article  PubMed  Google Scholar 

  29. Konety B.R., Nguyen T.S., Dhir R., Day R.S., Becich M..J, Stadler W.M., Getzenberg R.H. (2000) Detection of bladder cancer using a novel nuclear matrix protein, BLCA-4. Clin. Cancer Res. 6, 2618–25.

    CAS  PubMed  Google Scholar 

  30. Myers-Irvin J.M., Van Le T.S., Getzenberg R.H. (2005) Mechanistic analysis of the role of BLCA-4 in bladder cancer pathobiology. Cancer Res. 65, 7145–50.

    Article  CAS  PubMed  Google Scholar 

  31. Konety B.R., Nguyen T.S., Brenes G., Sholder A., Lewis N., Bastacky S., Potter D.M., Getzenberg R.H. (2000) Clinical usefulness of the novel marker BLCA-4 for the detection of bladder cancer. J. Urol. 164, 634–9.

    Article  CAS  PubMed  Google Scholar 

  32. Knudson W., Biswas C., Toole B.P. (1984) Interactions between human tumor cells and fibroblasts stimulate hyaluronate synthesis. Proc. Natl. Acad. Sci. U.S.A. 81, 6767–71.

    Article  CAS  PubMed  Google Scholar 

  33. Knudson W. (1996) Tumor-associated hyaluronan. Providing an extracellular matrix that facilitates invasion. Am. J. Pathol. 148, 1721–6.

    CAS  PubMed  Google Scholar 

  34. Lokeshwar V.B., Obek C., Pham H.T., Wei D., Young M.J., Duncan R.C., Soloway M.S., Block N.L. (2000) Urinary hyaluronic acid and hyaluronidase: markers for bladder cancer detection and evaluation of grade. J. Urol. 163, 348–56.

    Article  CAS  PubMed  Google Scholar 

  35. Lokeshwar V.B., Obek C., Soloway M.S., Block N.L. (1997) Tumor-associated hyaluronic acid: a new sensitive and specific urine marker for bladder cancer. Cancer Res. 57, 773–7.

    CAS  PubMed  Google Scholar 

  36. Balazs E.A., Von Euler J. (1952) The hyaluronidase content of necrotic tumor and testis tissue. Cancer Res. 12, 326–29.

    CAS  PubMed  Google Scholar 

  37. Pham H.T., Block N.L., Lokeshwar V.B. (1997) Tumor-derived hyaluronidase: a diagnostic urine marker for high-grade bladder cancer. Cancer Res. 57, 778–83.

    CAS  PubMed  Google Scholar 

  38. Franzmann E.J., Schroeder L., Goodwin W.J., Weed D.T., Fisher P., Lokeshwar V.B. (2003) Expression of tumor markers hyaluronic acid and hyaluronidase (HYAL1) in head and neck tumors. Int. J. Cancer. 106, 438–45.

    Article  CAS  PubMed  Google Scholar 

  39. Posey J.T., Soloway M.S., Ekici S., Sofer M., Civantos F., Duncan R.C., Lokeshwar V.B. (2003) Evaluation of the prognostic potential of hyaluronic acid and hyaluronidase (HYAL1) for prostate cancer. Cancer Res. 63, 2638–44.

    CAS  PubMed  Google Scholar 

  40. Lokeshwar V.B., Lokeshwar B.L., Pham H.T., Block N.L. (1996) Association of elevated levels of hyaluronidase, a matrix-degrading enzyme, with prostate cancer progression. Cancer Res. 56, 651–57.

    CAS  PubMed  Google Scholar 

  41. Madan A.K., Yu K., Dhurandhar N., Cullinane C., Pang Y., Beech D.J. (1999) Association of hyaluronidase and breast adenocarcinoma invasiveness. Oncol. Rep. 6, 607–9.

    CAS  PubMed  Google Scholar 

  42. Bertrand P., Girard N., Duval C., d’Anjou J., Chauzy C., Menard J.F., Delpech B. (1997) Increased hyaluronidase levels in breast tumor metastases. Int. J. Cancer. 73, 327–31.

    Article  CAS  PubMed  Google Scholar 

  43. Lokeshwar V.B., Young M.J., Goudarzi G., Iida N., Yudin A.I., Cherr G.N., Selzer M.G. (1999) Identification of bladder tumor-derived hyaluronidase: its similarity to HYAL1. Cancer Res. 59, 4464–70.

    CAS  PubMed  Google Scholar 

  44. Lokeshwar V.B., Rubinowicz D., Schroeder G.L., Forgacs E., Minna J.D., Block N.L., Nadji M., Lokeshwar B.L. (2001) Stromal and epithelial expression of tumor markers hyaluronic acid and HYAL1 hyaluronidase in prostate cancer. J. Biol. Chem. 276, 11922–32.

    Article  CAS  PubMed  Google Scholar 

  45. Lokeshwar V.B., Schroeder G.L., Selzer M.G., Hautmann S.H., Posey J.T., Duncan R.C., Watson R., Rose L., Markowitz S., Soloway M.S. (2002) Bladder tumor markers for monitoring recurrence and screening comparison of hyaluronic acid-hyaluronidase and BTA-Stat tests. Cancer. 95, 61–72.

    Article  PubMed  Google Scholar 

  46. Sanchez-Carbayo M., Herrero E., Megias J., Mira A., Soria F. (1999) Initial evaluation of the new urinary bladder cancer rapid test in the detection of transitional cell carcinoma of the bladder. Urology. 54, 656–61.

    Article  CAS  PubMed  Google Scholar 

  47. Bjorklund B., Bjorklund B. (1957) Antigenicity of pooled human malignant and normal tissues by cyto-immunological technique; presence of an insoluble, heat-labile tumor antigen. Int. Arch. Allergy Appl. Immunol. 10, 153–84.

    Article  CAS  PubMed  Google Scholar 

  48. Weber K., Osborn M., Moll R., Wiklund B., Luning B. (1984) Tissue polypeptide antigen (TPA) is related to the non-epidermal keratins 8, 18 and 19 typical of simple and non-squamous epithelia: re-evaluation of a human tumor marker. EMBO J. 11, 2707–14.

    Google Scholar 

  49. Gion M., Boracchi P., Dittadi R., Biganzoli E., Peloso L., Gatti C., Paccagnella A., Rosabian A., Vinante O., Meo S. (2000) Quantitative measurement of soluble cytokeratin fragments in tissue cytosol of 599 node negative breast cancer patients: a prognostic marker possibly associated with apoptosis. Breast Cancer Res. Treat. 59, 211–21.

    Article  CAS  PubMed  Google Scholar 

  50. Einarsson R., Lindman H., Bergh J. (2000) Use of TPS and CA 15-3 assays for monitoring chemotherapy in metastatic breast cancer patients. Anticancer Res. 20, 5089–93.

    CAS  PubMed  Google Scholar 

  51. Plebani M., Basso D., Navaglia F., De Paoli M., Tommasini A., Cipriani A. (1995) Clinical evaluation of seven tumour markers in lung cancer diagnosis: can any combination improve the results? Br. J. Cancer. 72, 170–3.

    CAS  PubMed  Google Scholar 

  52. Bennink R., Van Poppel H., Billen J., Decoster M., Baert L., Mortelmans L., Blanckaert N. (1999) Serum tissue polypeptide antigen (TPA): monoclonal or polyclonal radio-immunometric assay for the follow-up of bladder cancer. Anticancer Res. 19, 2609–13.

    CAS  PubMed  Google Scholar 

  53. Nicolini A., Caciagli M., Zampieri F., Ciampalini G., Carpi A., Spisni R., Colizzi C. (1995) Usefulness of CEA, TPA, GICA, CA 72.4, and CA 195 in the diagnosis of primary colorectal cancer and at its relapse. Cancer Detect. Prev. 19, 183–95.

    CAS  PubMed  Google Scholar 

  54. Rosati G., Riccardi F., Tucci A. (2000) Use of tumor markers in the management of head and neck cancer. Int. J. Biol. Markers. 15, 179–83.

    CAS  PubMed  Google Scholar 

  55. Casetta G., Piana P., Cavallini A., Vottero M., Tizzani A. (1993) Urinary levels of tumour associated antigens (CA 19-9, TPA and CEA) in patients with neoplastic and non-neoplastic urothelial abnormalities. Br. J. Urol. 72, 60–64.

    Article  CAS  PubMed  Google Scholar 

  56. Carbin B.E., Ekman P., Eneroth P., Nilsson B. (1989) Urine-TPA (tissue polypeptide antigen), flow cytometry and cytology as markers for tumor invasiveness in urinary bladder carcinoma. Urol. Res. 17, 269–72.

    Article  CAS  PubMed  Google Scholar 

  57. Sanchez-Carbayo M., Herrero E., Megias J., Mira A., Soria F. (1999) Comparative sensitivity of urinary CYFRA 21-1, urinary bladder cancer antigen, tissue polypeptide antigen, tissue polypeptide antigen and NMP22 to detect bladder cancer. J. Urol. 162, 1951–56.

    Article  CAS  PubMed  Google Scholar 

  58. Yao W.J., Chang C.J., Chan S.H., Chow N.H., Cheng H.L., Tzai T.S., Lin S.N. (1995) Significance of urinary tissue polypeptide specific antigen (TPS) determination in patients with urothelial carcinoma. Anticancer Res. 15, 2819–23.

    CAS  PubMed  Google Scholar 

  59. Sanchez-Carbayo M., Urrutia M., Silva J.M., Romani R., Garcia J., Alferez F., Gonzalez de Buitrago J.M., Navajo J.A. (2000) Urinary tissue polypeptide-specific antigen for the diagnosis of bladder cancer. Urology. 55, 526–32.

    Article  CAS  PubMed  Google Scholar 

  60. Nisman B., Barak V., Shapiro A., Golijanin D., Peretz T., Pode D. (2002) Evaluation of urine CYFRA 21-1 for the detection of primary and recurrent bladder carcinoma. Cancer. 94, 2914–22.

    Article  CAS  PubMed  Google Scholar 

  61. Senga Y., Kimura G., Hattori T., Yoshida K. (1996) Clinical evaluation of soluble cytokeratin 19 fragments (CYFRA 21-1) in serum and urine of patients with bladder cancer. Urology. 48, 703–10.

    Article  CAS  PubMed  Google Scholar 

  62. Fatela-Cantillo D., Fernandez-Suarez A., Menendez V., Galan J.A., Filella X. (2005) Low utility of CYFRA 21-1 serum levels for diagnosis and follow-up in bladder cancer patients. J. Clin. Lab. Anal. 19, 167–71.

    Article  CAS  PubMed  Google Scholar 

  63. Andreadis C., Touloupidis S., Galaktidou G., Kortsaris A.H., Boutis A., Mouratidou D. (2005) Serum CYFRA 21-1 in patients with invasive bladder cancer and its relevance as a tumor marker during chemotherapy. J. Urol. 174, 1771–75.

    Article  CAS  PubMed  Google Scholar 

  64. Morita T., Kikuchi T., Hashimoto S., Kobayashi Y., Tokue A. (1997) Cytokeratin-19 fragment (CYFRA 21-1) in bladder cancer. Eur. Urol. 32, 237–44.

    CAS  PubMed  Google Scholar 

  65. Sanchez-Carbayo M., Herrero E., Megias J., Mira A., Soria F. (1999) Initial evaluation of the new urinary bladder cancer rapid test in the detection of transitional cell carcinoma of the bladder. Urology. 54, 656–61.

    Article  CAS  PubMed  Google Scholar 

  66. Mungan N.A., Vriesema J.L., Thomas C.M., Kiemeney L.A., Witjes J.A. (2000) Urinary bladder cancer test: a new urinary tumor marker in the follow-up of superficial bladder cancer. Urology. 56, 787–92.

    Article  CAS  PubMed  Google Scholar 

  67. Hakenberg O.W., Fuessel S., Richter K., Froehner M., Oehlschlaeger S., Rathert P., Meye A., Wirth M.P. (2004) Qualitative and quantitative assessment of urinary cytokeratin 8 and 18 fragments compared with voided urine cytology in diagnosis of bladder carcinoma. Urology. 64, 1121–26.

    Article  PubMed  Google Scholar 

  68. Kibar Y., Goktas S., Kilic S., Yaman H., Onguru O., Peker A.F. (2006) Prognostic value of cytology, nuclear matrix protein 22 (NMP22) test, and urinary bladder cancer II (UBC II) test in early recurrent transitional cell carcinoma of the bladder. Ann. Clin. Lab. Sci. 36, 31–38.

    CAS  PubMed  Google Scholar 

  69. Banks R.E., Dunn M.J., Hochstrasser D.F., Sanchez J.C., Blackstock W., Pappin D.J., Selby P.J. (2000) Proteomics: new perspectives, new biomedical opportunities. Lancet. 356, 1749–56.

    Article  CAS  PubMed  Google Scholar 

  70. Binz P.A., Hochstrasser D.F., Appel R.D. (2003) Mass spectrometry-based proteomics: current status and potential use in clinical chemistry. Clin. Chem. Lab. Med. 12, 1540–51.

    Article  Google Scholar 

  71. Heck A.J., Krijgsveld J. (2004) Mass spectrometry-based quantitative proteomics. Expert Rev. Proteomics. 1, 317–26.

    Article  CAS  PubMed  Google Scholar 

  72. Schneider L.V., Hall M.P. (2005) Stable isotope methods for high-precision proteomics. Drug Discov. Today. 10, 353–63.

    Article  CAS  PubMed  Google Scholar 

  73. Camacho-Carvajal M.M., Wollscheid B., Aebersold R. Steimle V., Schamel W.W. (2004) Two-dimensional Blue native/SDS gel electrophoresis of multi-protein complexes from whole cellular lysates: a proteomics approach. Mol. Cell Proteomics. 3, 176–82.

    CAS  PubMed  Google Scholar 

  74. Ye B., Cramer D.W., Skates S.J., Gygi S.P., Pratomo V., Fu L., Horick N.K., Licklider L.J., Schorge J.O., Berkowitz R.S., Mok S.C. (2003) Haptoglobin-alpha subunit as potential serum biomarker in ovarian cancer: identification and characterization using proteomic profiling and mass spectrometry. Clin. Cancer Res. 9, 2904–11.

    CAS  PubMed  Google Scholar 

  75. Kozak K.R., Amneus M.W., Pusey S.M., Su F., Luong M.N., Luong S.A., Reddy S.T., Farias-Eisner R. (2003) Identification of biomarkers for ovarian cancer using strong anion-exchange ProteinChips: potential use in diagnosis and prognosis. Proc. Natl. Acad. Sci. U.S.A. 100, 12343–48.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang Z., Bast R.C. Jr, Yu Y., Li J., Sokoll L.J., Rai A.J., Rosenzweig J.M., Cameron B., Wang Y.Y., Meng X.Y., Berchuck A., Van Haaften-Day C., Hacker N.F., de Bruijn H.W., van der Zee A.G., Jacobs I.J., Fung E.T., Chan D.W. (2004) Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res. 64, 5882–90.

    Article  CAS  PubMed  Google Scholar 

  77. Rai A.J., Zhang Z., Rosenzweig J., Shih I.M., Pham T., Fung E.T., Sokoll L.J., Chan D.W. (2002) Proteomic approaches to tumor marker discovery. Arch. Pathol. Lab. Med. 126, 1518–26.

    CAS  PubMed  Google Scholar 

  78. Kozak K.R., Su F., Whitelegge J.P., Faull K., Reddy S., Farias-Eisner R. (2005) Characterization of serum biomarkers for detection of early stage ovarian cancer. Proteomics. 5, 4589–96.

    Article  CAS  PubMed  Google Scholar 

  79. Pawlik T.M., Fritsche H., Coombes K.R., Xiao L., Krishnamurthy S., Hunt K.K., Pusztai L., Chen J.N., Clarke C.H., Arun B., Hung M.C., Kuerer H.M. (2005) Significant differences in nipple aspirate fluid protein expression between healthy women and those with breast cancer demonstrated by time-of-flight mass spectrometry. Breast Cancer Res. Treat. 89, 149–57.

    Article  CAS  PubMed  Google Scholar 

  80. Li J., Orlandi R., White C.N., Rosenzweig J., Zhao J., Seregni E., Morelli D., Yu Y., Meng X.Y., Zhang Z., Davidson N.E., Fung E.T., Chan D.W. (2005) Independent validation of candidate breast cancer serum biomarkers identified by mass spectrometry. Clin. Chem. 51, 2229–35.

    Article  CAS  PubMed  Google Scholar 

  81. Heike Y., Hosokawa M., Osumi S., Fujii D., Aogi K., Takigawa N., Ida M., Tajiri H., Eguchi K., Shiwa M., Wakatabe R., Arikuni H., Takaue Y., Takashima S. (2005) Identification of serum proteins related to adverse effects induced by docetaxel infusion from protein expression profiles of serum using SELDI ProteinChip system. Anticancer Res. 25, 1197–203.

    CAS  PubMed  Google Scholar 

  82. Grizzle W.E., Adam B.L., Bigbee W.L., Conrads T.P., Carroll C., Feng Z., Izbicka E., Jendoubi M., Johnsey D., Kagan J., Leach R.J., McCarthy D.B., Semmes O.J., Srivastava S., Srivastava S., Thompson I.M., Thornquist M.D., Verma M., Zhang Z., Zou Z. (2003–2004) Serum protein expression profiling for cancer detection: validation of a SELDI-based approach for prostate cancer. Dis. Markers. 19, 185–95.

    Google Scholar 

  83. Malik G., Ward M.D., Gupta S.K., Trosset M.W., Grizzle W.E., Adam B.L., Diaz J.I., Semmes O.J. (2005) Serum levels of an isoform of apolipoprotein A-II as a potential marker for prostate cancer. Clin. Cancer Res. 11, 1073–85.

    CAS  PubMed  Google Scholar 

  84. Liotta L.A., Lowenthal M., Mehta A., Conrads T.P., Veenstra T.D., Fishman D.A., Petricoin E.F. III. (2005) Importance of communication between producers and consumers of publicly available experimental data. J. Natl. Cancer Inst. 97, 310–4.

    Article  PubMed  Google Scholar 

  85. Woong-Shick A., Sung-Pil P., Su-Mi B., Joon-Mo L., Sung-Eun N., Gye-Hyun N., Young-Lae C., Ho-Sun C., Heung-Jae J., Chong-Kook K., Young-Wan K., Byoung-Don H., Hyun-Sun J. (2005) Identification of hemoglobin-alpha and -beta subunits as potential serum biomarkers for the diagnosis and prognosis of ovarian cancer. Cancer Sci. 96, 197–201.

    Article  PubMed  CAS  Google Scholar 

  86. Moshkovskii S.A., Serebryakova M.V., Kuteykin-Teplyakov K.B., Tikhonova O.V., Goufman E.I., Zgoda V.G., Taranets I.N., Makarov O.V., Archakov A.I. (2005) Ovarian cancer marker of 11.7 kDa detected by proteomics is a serum amyloid A1. Proteomics. 5, 3790–97.

    Article  CAS  PubMed  Google Scholar 

  87. Le L., Chi K., Tyldesley S., Flibotte S., Diamond D.L., Kuzyk M.A., Sadar M.D. (2005) Identification of serum amyloid A as a biomarker to distinguish prostate cancer patients with bone lesions. Clin. Chem. 51, 695–707.

    Article  CAS  PubMed  Google Scholar 

  88. Shiwa M., Nishimura Y., Wakatabe R., Fukawa A., Arikuni H., Ota H., Kato Y., Yamori T. (2003) Rapid discovery and identification of a tissue-specific tumor biomarker from 39 human cancer cell lines using the SELDI ProteinChip platform. Biochem. Biophys. Res. Commun. 309, 18–25.

    Article  CAS  PubMed  Google Scholar 

  89. Paradis V., Degos F., Dargere D., Pham N., Belghiti J., Degott C., Janeau J.L., Bezeaud A., Delforge D., Cubizolles M., Laurendeau I., Bedossa P. (2005) Identification of a new marker of hepatocellular carcinoma by serum protein profiling of patients with chronic liver diseases. Hepatology. 41: 40–47.

    Article  CAS  PubMed  Google Scholar 

  90. Tolson J., Bogumil R., Brunst E., Beck H., Elsner R., Humeny A., Kratzin H., Deeg M., Kuczyk M., Mueller G.A., Mueller C.A., Flad T. (2004) Serum protein profiling by SELDI mass spectrometry: detection of multiple variants of serum amyloid alpha in renal cancer patients. Lab. Invest. 84, 845–56.

    Article  CAS  PubMed  Google Scholar 

  91. Rosty C., Christa L., Kuzdzal S., Baldwin W.M., Zahurak M.L., Carnot F., Chan D.W., Canto M., Lillemoe K.D., Cameron J.L., Yeo C.J., Hruban R.H., Goggins M. (2002) Identification of hepatocarcinoma-intestine-pancreas/pancreatitis-associated protein I as a biomarker for pancreatic ductal adenocarcinoma by protein biochip technology. Cancer Res. 62, 1868–75.

    CAS  PubMed  Google Scholar 

  92. Wadsworth J.T., Somers K.D., Stack B.C. Jr., Cazares L., Malik G., Adam B.L., Wright G.L. Jr., Semmes O.J. (2004) Identification of patients with head and neck cancer using serum protein profiles. Arch. Otolaryngol. Head Neck Surg. 130, 98–104.

    Article  PubMed  Google Scholar 

  93. Melle C., Ernst G., Schimmel B., Bleul A., Thieme H., Kaufmann R., Mothes H., Settmacher U., Claussen U., Halbhuber K.J., Von Eggeling F. (2005) Discovery and identification of alpha-defensins as low abundant, tumor-derived serum markers in colorectal cancer. Gastroenterology. 129, 66–73.

    Article  CAS  PubMed  Google Scholar 

  94. Albrethsen J., Bogebo R., Gammeltoft S., Olsen J., Winther B., Raskov H. (2005) Upregulated expression of human neutrophil peptides 1, 2 and 3 (HNP 1-3) in colon cancer serum and tumours: a biomarker study. B.M.C. Cancer. 5, 8–13.

    Google Scholar 

  95. Melle C., Ernst G., Schimmel B., Bleul A., Koscielny S., Wiesner A., Bogumil R., Moller U., Osterloh D., Halbhuber K.J., von Eggeling F. (2003) Biomarker discovery and identification in laser microdissected head and neck squamous cell carcinoma with ProteinChip technology, two-dimensional gel electrophoresis, tandem mass spectrometry, and immunohistochemistry. Mol. Cell Proteomics. 2, 443–52.

    CAS  PubMed  Google Scholar 

  96. Cho W.C., Yip T.T., Yip C., Yip V., Thulasiraman V., Ngan R.K., Yip T.T., Lau W.H., Au J.S., Law S.C., Cheng W.W., Ma V.W., Lim C.K. (2004) Identification of serum amyloid a protein as a potentially useful biomarker to monitor relapse of nasopharyngeal cancer by serum proteomic profiling. Clin. Cancer Res. 10, 43–52.

    Article  CAS  PubMed  Google Scholar 

  97. Yang E.C., Guo J., Diehl G., DeSouza L., Rodrigues M.J., Romaschin A.D., Colgan T.J., Siu K.W. (2004) Protein expression profiling of endometrial malignancies reveals a new tumor marker: chaperonin 10. J. Proteome Res. 3, 636–43.

    Article  CAS  PubMed  Google Scholar 

  98. Lin Z., Jenson S.D., Lim M.S., Elenitoba-Johnson K.S. (2004) Application of SELDI-TOF mass spectrometry for the identification of differentially expressed proteins in transformed follicular lymphoma. Mod. Pathol. 17, 670–78.

    Article  CAS  PubMed  Google Scholar 

  99. Guo J., Yang E.C., Desouza L., Diehl G., Rodrigues M.J., Romaschin A.D., Colgan T.J., Siu K.W. (2005) A strategy for high-resolution protein identification in surface-enhanced laser desorption/ionization mass spectrometry: calgranulin A and chaperonin 10 as protein markers for endometrial carcinoma. Proteomics. 5, 1953–66.

    Article  CAS  PubMed  Google Scholar 

  100. Diamond D.L., Zhang Y., Gaiger A., Smithgall M., Vedvick T.S., Carter D. (2003) Use of ProteinChip array surface enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) to identify thymosin beta-4, a differentially secreted protein from lymphoblastoid cell lines. J. Am. Soc. Mass. Spectrom. 14, 760–65.

    Article  CAS  PubMed  Google Scholar 

  101. Weinberger S.R., Dalmasso E.A., Fung E.T. (2002) Current achievements using ProteinChip Array technology. Curr. Opin. Chem. Biol. 6, 86–91.

    Article  CAS  PubMed  Google Scholar 

  102. Zhang Y.F., Wu D.L., Guan M., Liu W.W., Wu Z., Chen Y.M., Zhang W.Z., Lu Y. (2004) Tree analysis of mass spectral urine profiles discriminates transitional cell carcinoma of the bladder from noncancer patient. Clin. Biochem. 37, 772–79.

    Article  CAS  PubMed  Google Scholar 

  103. Liu W., Guan M., Wu D., Zhang Y., Wu Z., Xu M., Lu Y. (2005) Using tree analysis pattern and SELDI-TOF-MS to discriminate transitional cell carcinoma of the bladder cancer from noncancer patients. Eur. Urol. 47, 456–62.

    Article  PubMed  Google Scholar 

  104. Munro N.P., Cairns D.A., Clarke P., Rogers M., Stanley A.J., Barrett J.H., Harnden P., Thompson D., Eardley I., Banks R.E., Knowles M.A. (2006) Urinary biomarker profiling in transitional cell carcinoma. Int. J. Cancer. 119, 2642–50.

    Article  CAS  PubMed  Google Scholar 

  105. Sanchez-Carbayo M., Urrutia M., Silva J.M., Romani R., De Buitrago J.M., Navajo J.A. (2001) Comparative predictive values of urinary cytology, urinary bladder cancer antigen, CYFRA 21-1 and NMP22 for evaluating symptomatic patients at risk for bladder cancer. J. Urol. 165, 1462–67.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Barton Grossman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Gaston, K.E., Grossman, H.B. (2010). Proteomic Assays for the Detection of Urothelial Cancer. In: Rai, A. (eds) The Urinary Proteome. Methods in Molecular Biology, vol 641. Humana Press. https://doi.org/10.1007/978-1-60761-711-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-711-2_17

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-710-5

  • Online ISBN: 978-1-60761-711-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics