Skip to main content

Antimicrobial Photodynamic Inactivation and Photodynamic Therapy for Infections

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 635))

Abstract

Photodynamic therapy (PDT) was initially discovered over 100 years ago by its ability to kill microorganisms, but its use to treat infections clinically has not been much developed. However, the present relentless increase in antibiotic resistance worldwide and the emergence of strains that are resistant to all known antibiotics has stimulated research into novel antimicrobial strategies such as PDT that are thought to be unlikely to lead to the development of resistance. In this chapter we will cover the use of PDT to kill pathogenic microbial cells in vitro and describe a mouse model of localized infection and its treatment by PDT without causing excessive damage to the host tissue.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Jesionek, A. and von Tappenier, H. (1903) Zur behandlung der hautcarcinomit mit fluorescierenden stoffen. Muench Med Wochneshr, 47, 2042.

    Google Scholar 

  2. Raab, C. (1900) Über die Wirkung fluoreszierender Stoffe auf Infusoria. Z Biol, 39, 524–546.

    CAS  Google Scholar 

  3. Bellin, J. S., Lutwick, L., and Jonas, B. (1969) Effects of photodynamic action on E. coli. Arch Biochem Biophys, 132, 157–164.

    Article  PubMed  CAS  Google Scholar 

  4. Janikova, A. (1966) The photodynamic action of acridine orange and proflavine on the survival of Escherichia coli B and its capacity for phage T3. Folia Biol, 12, 132–136.

    CAS  Google Scholar 

  5. Malik, Z., Ladan, H., and Nitzan, Y. (1992) Photodynamic inactivation of Gram-negative bacteria: problems and possible solutions. J Photochem Photobiol B, 14, 262–266.

    Article  PubMed  CAS  Google Scholar 

  6. Malik, Z., Hanania, J., and Nitzan, Y. (1990) Bactericidal effects of photoactivated porphyrins – an alternative approach to antimicrobial drugs. J Photochem Photobiol B, 5, 281–293.

    Article  PubMed  CAS  Google Scholar 

  7. Bertoloni, G., Rossi, F., Valduga, G., Jori, G., and van Lier, J. (1990) Photosensitizing activity of water- and lipid-soluble phthalocyanines on Escherichia coli. FEMS Microbiol Lett, 59, 149–155.

    Article  PubMed  CAS  Google Scholar 

  8. Hamblin, M. R. and Hasan, T. (2004) Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem Photobiol Sci, 3, 436–450.

    Article  PubMed  CAS  Google Scholar 

  9. Merchat, M., Bertolini, G., Giacomini, P., Villanueva, A., and Jori, G. (1996) Meso-substituted cationic porphyrins as efficient photosensitizers of gram-positive and gram-negative bacteria. J Photochem Photobiol B, 32, 153–157.

    Article  PubMed  CAS  Google Scholar 

  10. Merchat, M., Spikes, J. D., Bertoloni, G., and Jori, G. (1996) Studies on the mechanism of bacteria photosensitization by meso-substituted cationic porphyrins. J Photochem Photobiol B, 35, 149–157.

    Article  PubMed  CAS  Google Scholar 

  11. Minnock, A., Vernon, D. I., Schofield, J., Griffiths, J., Parish, J. H., and Brown, S. T. (1996) Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both gram-negative and gram-positive bacteria. J Photochem Photobiol B, 32, 159–164.

    Article  PubMed  CAS  Google Scholar 

  12. Minnock, A., Vernon, D. I., Schofield, J., Griffiths, J., Parish, J. H., and Brown, S. B. (2000) Mechanism of uptake of a cationic water-soluble pyridinium zinc phthalocyanine across the outer membrane of Escherichia coli. Antimicrob Agents Chemother, 44, 522–527.

    Article  PubMed  CAS  Google Scholar 

  13. Hamblin, M. R., O’Donnell, D. A., Murthy, N., Rajagopalan, K., Michaud, N., Sherwood, M. E., and Hasan, T. (2002) Polycationic photosensitizer conjugates: effects of chain length and Gram classification on the photodynamic inactivation of bacteria. J Antimicrob Chemother, 49, 941–951.

    Article  PubMed  CAS  Google Scholar 

  14. Moan, J. and Peng, Q. (2003) An outline of the hundred-year history of PDT. Anticancer Res, 23, 3591–3600.

    PubMed  Google Scholar 

  15. Demidova, T. N., Gad, F., Zahra, T., Francis, K. P., and Hamblin, M. R. (2005) Monitoring photodynamic therapy of localized infections by bioluminescence imaging of genetically engineered bacteria. J Photochem Photobiol B, 81, 15–25.

    Article  PubMed  CAS  Google Scholar 

  16. Belmatoug, N. and Fantin, B. (1997) Contribution of animal models of infection for the evaluation of the activity of antimicrobial agents. Int J Antimicrob Agents, 9, 73–82.

    Article  PubMed  CAS  Google Scholar 

  17. Jett, B. D., Hatter, K. L., Huycke, M. M., and Gilmore, M. S. (1997) Simplified agar plate method for quantifying viable bacteria. Biotechniques, 23, 648–650.

    PubMed  CAS  Google Scholar 

  18. Demidova, T. N. and Hamblin, M. R. (2005) Effect of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrob Agents Chemother, 49, 2329–2335.

    Article  PubMed  CAS  Google Scholar 

  19. Stevens, E. J., Ryan, C. M., Friedberg, J. S., Barnhill, R. L., Yarmush, M. L., and Tompkins, R. G. (1994) A quantitative model of invasive Pseudomonas infection in burn injury. J Burn Care Rehabil, 15, 232–235.

    Article  PubMed  CAS  Google Scholar 

  20. Mantareva, V., Kussovski, V., Angelov, I., Borisova, E., Avramov, L., Schnurpfeil, G., and Wohrle, D. (2007) Photodynamic activity of water-soluble phthalocyanine zinc(II) complexes against pathogenic microorganisms. Bioorg Med Chem, 15, 4829–4835.

    Article  PubMed  CAS  Google Scholar 

  21. Hamblin, M. R., Zahra, T., Contag, C. H., McManus, A. T., and Hasan, T. (2003) Optical monitoring and treatment of potentially lethal wound infections in vivo. J Infect Dis, 187, 1717–1725.

    Article  PubMed  Google Scholar 

  22. Oliveira, A., Almeida, A., Carvalho, C. M., Tome, J. P., Faustino, M. A., Neves, M. G., Tome, A. C., Cavaleiro, J. A., and Cunha, A. (2009) Porphyrin derivatives as photosensitizers for the inactivation of Bacillus cereus endospores. J Appl Microbiol, 105, 1986–1995.

    Article  Google Scholar 

  23. Caminos, D. A., Spesia, M. B., Pons, P., and Durantini, E. N. (2008) Mechanisms of Escherichia coli photodynamic inactivation by an amphiphilic tricationic porphyrin and 5,10,15,20-tetra(4-N,N,N-trimethylammoniumphenyl) porphyrin. Photochem Photobiol Sci, 7, 1071–1078.

    Article  PubMed  CAS  Google Scholar 

  24. Scalise, I. and Durantini, E. N. (2005) Synthesis, properties, and photodynamic inactivation of Escherichia coli using a cationic and a noncharged Zn(II) pyridyloxyphthalocyanine derivatives. Bioorg Med Chem, 13, 3037–3045.

    Article  PubMed  CAS  Google Scholar 

  25. Schastak, S., Gitter, B., Handzel, R., Hermann, R., and Wiedemann, P. (2008) Improved photoinactivation of gram-negative and gram-positive methicillin-resistant bacterial strains using a new near-infrared absorbing meso-tetrahydroporphyrin: a comparative study with a chlorine e6 photosensitizer photolon. Methods Find Exp Clin Pharmacol, 30, 129–133.

    Article  PubMed  CAS  Google Scholar 

  26. Wainwright, M., Phoenix, D. A., Laycock, S. L., Wareing, D. R., and Wright, P. A. (1998) Photobactericidal activity of phenothiazinium dyes against methicillin-resistant strains of Staphylococcus aureus. FEMS Microbiol Lett, 160, 177–181.

    Article  PubMed  CAS  Google Scholar 

  27. Darville, T., Andrews, C. W., Jr., Laffoon, K. K., Shymasani, W., Kishen, L. R., and Rank, R. G. (1997) Mouse strain-dependent variation in the course and outcome of chlamydial genital tract infection is associated with differences in host response. Infect Immun, 65, 3065–3073.

    PubMed  CAS  Google Scholar 

  28. Wilson, K. R., Napper, J. M., Denvir, J., Sollars, V. E., and Yu, H. D. (2007) Defect in early lung defence against Pseudomonas aeruginosa in DBA/2 mice is associated with acute inflammatory lung injury and reduced bactericidal activity in naive macrophages. Microbiology, 153, 968–979.

    Article  PubMed  CAS  Google Scholar 

  29. McVay, C. S., Velasquez, M., and Fralick, J. A. (2007) Phage therapy of Pseudomonas aeruginosa infection in a mouse burn wound model. Antimicrob Agents Chemother, 51, 1934–1938.

    Article  PubMed  CAS  Google Scholar 

  30. Toliver-Kinsky, T. E., Varma, T. K., Lin, C. Y., Herndon, D. N., and Sherwood, E. R. (2002) Interferon-gamma production is suppressed in thermally injured mice: decreased production of regulatory cytokines and corresponding receptors. Shock, 18, 322–330.

    Article  PubMed  Google Scholar 

  31. Barnea, Y., Carmeli, Y., Kuzmenko, B., Gur, E., Hammer-Munz, O., and Navon-Venezia, S. (2006) The establishment of a Pseudomonas aeruginosa-infected burn-wound sepsis model and the effect of imipenem treatment. Ann Plast Surg, 56, 674–679.

    Article  PubMed  CAS  Google Scholar 

  32. Hamblin, M. R., O’Donnell, D. A., Murthy, N., Contag, C. H., and Hasan, T. (2002) Rapid control of wound infections by targeted photodynamic therapy monitored by in vivo bioluminescence imaging. Photochem Photobiol, 75, 51–57.

    Article  PubMed  CAS  Google Scholar 

  33. Gad, F., Zahra, T., Francis, K. P., Hasan, T., and Hamblin, M. R. (2004) Targeted photodynamic therapy of established soft-tissue infections in mice. Photochem Photobiol Sci, 3, 451–458.

    Article  PubMed  CAS  Google Scholar 

  34. Eaves-Pyles, T. and Alexander, J. W. (2001) Comparison of translocation of different types of microorganisms from the intestinal tract of burned mice. Shock, 16, 148–152.

    Article  PubMed  CAS  Google Scholar 

  35. Gianotti, L., Alexander, J. W., Pyles, T., James, L., and Babcock, G. F. (1993) Relationship between extent of burn injury and magnitude of microbial translocation from the intestine. J Burn Care Rehabil, 14, 336–342.

    Article  PubMed  CAS  Google Scholar 

  36. Manson, W. L., Coenen, J. M., Klasen, H. J., and Horwitz, E. H. (1992) Intestinal bacterial translocation in experimentally burned mice with wounds colonized by Pseudomonas aeruginosa. J Trauma, 33, 654–658.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Huang, L., Dai, T., Hamblin, M.R. (2010). Antimicrobial Photodynamic Inactivation and Photodynamic Therapy for Infections. In: Gomer, C. (eds) Photodynamic Therapy. Methods in Molecular Biology, vol 635. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-697-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-697-9_12

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-696-2

  • Online ISBN: 978-1-60761-697-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics