Skip to main content

RNA Modifications: A Mechanism that Modulates Gene Expression

  • Protocol
  • First Online:
RNA Therapeutics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 629))

Abstract

Accuracy in the flow of genetic information from DNA to protein, or gene expression, is essential to the viability of an organisms. Pre-mRNA splicing and protein translation are two major steps in eukaryotic gene expression that necessitate the production of accurate gene products. Both processes occur in large complexes, consisting of both proteins and noncoding RNAs. Interestingly, the RNA components contain a large number of posttranscriptional modifications, including 2ʹ-O-methylation and pseudouridylation, which are functionally important. In this chapter, we highlight the functional aspects of the modifications of spliceosomal snRNA and rRNA and provide a framework for understanding how posttranscriptional modifications are capable of influencing gene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Staley, J.P. and Woolford, J.L., Jr. (2009) Assembly of ribosomes and spliceosomes: complex ribonucleoprotein machines. Curr Opin Cell Biol, 21, 109–118.

    Article  PubMed  CAS  Google Scholar 

  2. Jurica, M.S. and Moore, M.J. (2003) Pre-mRNA splicing: awash in a sea of proteins. Mol Cell, 12, 5–14.

    Article  PubMed  CAS  Google Scholar 

  3. Staley, J.P. and Guthrie, C. (1998) Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell, 92, 315–326.

    Article  PubMed  CAS  Google Scholar 

  4. Yu, Y.T., Scharl, E.C., Smith, C.M., and Steitz, J.A. (1999) The RNA World, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 487–524.

    Google Scholar 

  5. Valadkhan, S. (2005) snRNAs as the catalysts of pre-mRNA splicing. Curr Opin Chem Biol, 9, 603–608.

    Article  PubMed  CAS  Google Scholar 

  6. Cohn, W.E. and Volkin, E. (1951) Nucleoside-5'-phosphates from ribonucleic acid. Nature, 167, 483–484.

    Article  CAS  Google Scholar 

  7. Hodnett, J.L. and Busch, H. (1968) Isolation and characterization of uridylic acid-rich 7 S ribonucleic acid of rat liver nuclei. J Biol Chem, 243, 6334–6342.

    PubMed  CAS  Google Scholar 

  8. Weinberg, R.A. and Penman, S. (1968) Small molecular weight monodisperse nuclear RNA. J Mol Biol, 38, 289–304.

    Article  PubMed  CAS  Google Scholar 

  9. Muramatsu, M. and Busch, H. (1965) Studies on the nuclear and nucleolar ribonucleic acid of regenerating rat liver. J Biol Chem, 240, 3960–3966.

    PubMed  CAS  Google Scholar 

  10. Lerner, M.R. and Steitz, J.A. (1979) Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus. Proc Natl Acad Sci USA, 76, 5495–5499.

    Article  PubMed  CAS  Google Scholar 

  11. Reddy, R. and Busch, H. (1988) Structure and Function of Major and Minor Small Nuclear Ribonucleoprotein Particles. Springer-Verlag Press, Heidelberg, pp. 1–37.

    Book  Google Scholar 

  12. Patton, J.R. (1993) Ribonucleoprotein particle assembly and modification of U2 small nuclear RNA containing 5-fluorouridine. Biochemistry, 32, 8939–8944.

    Article  PubMed  CAS  Google Scholar 

  13. Patton, J.R. (1993) Multiple pseudouridine synthase activities for small nuclear RNAs. Biochem J, 290 (Pt 2), 595–600.

    PubMed  CAS  Google Scholar 

  14. McPheeters, D.S., Fabrizio, P., and Abelson, J. (1989) In vitro reconstitution of functional yeast U2 snRNPs. Genes Dev, 3, 2124–2136.

    Article  PubMed  CAS  Google Scholar 

  15. Will, C.L., Rumpler, S., Klein Gunnewiek, J., van Venrooij, W.J., and Luhrmann, R. (1996) In vitro reconstitution of mammalian U1 snRNPs active in splicing: the U1-C protein enhances the formation of early (E) spliceosomal complexes. Nucl Acids Res, 24, 4614–4623.

    Article  PubMed  CAS  Google Scholar 

  16. Wersig, C. and Bindereif, A. (1992) Reconstitution of functional mammalian U4 small nuclear ribonucleoprotein: Sm protein binding is not essential for splicing in vitro. Mol Cell Biol, 12, 1460–1468.

    PubMed  CAS  Google Scholar 

  17. Segault, V., Will, C.L., Sproat, B.S., and Luhrmann, R. (1995) In vitro reconstitution of mammalian U2 and U5 snRNPs active in splicing: Sm proteins are functionally interchangeable and are essential for the formation of functional U2 and U5 snRNPs. EMBO J, 14, 4010–4021.

    PubMed  CAS  Google Scholar 

  18. Fabrizio, P., McPheeters, D.S., and Abelson, J. (1989) In vitro assembly of yeast U6 snRNP: a functional assay. Genes Dev, 3, 2137–2150.

    Article  PubMed  CAS  Google Scholar 

  19. Fabrizio, P. and Abelson, J. (1990) Two domains of yeast U6 small nuclear RNA required for both steps of nuclear precursor messenger RNA splicing. Science, 250, 404–409.

    Article  PubMed  CAS  Google Scholar 

  20. Fabrizio, P. and Abelson, J. (1992) Thiophosphates in yeast U6 snRNA specifically affect pre-mRNA splicing in vitro. Nucl Acids Res, 20, 3659–3664.

    Article  PubMed  CAS  Google Scholar 

  21. Wolff, T. and Bindereif, A. (1992) Reconstituted mammalian U4/U6 snRNP complements splicing: a mutational analysis. EMBO J, 11, 345–359.

    PubMed  CAS  Google Scholar 

  22. Wolff, T., Menssen, R., Hammel, J., and Bindereif, A. (1994) Splicing function of mammalian U6 small nuclear RNA: conserved positions in central domain and helix I are essential during the first and second step of pre-mRNA splicing. Proc Natl Acad Sci USA, 91, 903–907.

    Article  PubMed  CAS  Google Scholar 

  23. Wolff, T. and Bindereif, A. (1995) Mutational analysis of human U6 RNA: stabilizing the intramolecular helix blocks the spliceosomal assembly pathway. Biochim Biophys Acta, 1263, 39–44.

    PubMed  Google Scholar 

  24. Wolff, T. and Bindereif, A. (1993) Conformational changes of U6 RNA during the spliceosome cycle: an intramolecular helix is essential both for initiating the U4–U6 interaction and for the first step of slicing. Genes Dev, 7, 1377–1389.

    Article  PubMed  CAS  Google Scholar 

  25. Yu, Y.T., Maroney, P.A., and Nilsen, T.W. (1993) Functional reconstitution of U6 snRNA in nematode cis- and trans-splicing: U6 can serve as both a branch acceptor and a 5ʹ exon. Cell, 75, 1049–1059.

    Article  PubMed  CAS  Google Scholar 

  26. Yu, Y.T., Maroney, P.A., Darzynkiwicz, E., and Nilsen, T.W. (1995) U6 snRNA function in nuclear pre-mRNA splicing: a phosphorothioate interference analysis of the U6 phosphate backbone. RNA, 1, 46–54.

    PubMed  CAS  Google Scholar 

  27. Pan, Z.Q. and Prives, C. (1989) U2 snRNA sequences that bind U2-specific proteins are dispensable for the function of U2 snRNP in splicing. Genes Dev, 3, 1887–1898.

    Article  PubMed  CAS  Google Scholar 

  28. McPheeters, D.S. and Abelson, J. (1992) Mutational analysis of the yeast U2 snRNA suggests a structural similarity to the catalytic core of group I introns. Cell, 71, 819–831.

    Article  PubMed  CAS  Google Scholar 

  29. Yu, Y.T., Shu, M.D., and Steitz, J.A. (1998) Modifications of U2 snRNA are required for snRNP assembly and pre-mRNA splicing. EMBO J, 17, 5783–5795.

    Article  PubMed  CAS  Google Scholar 

  30. Donmez, G., Hartmuth, K., and Luhrmann, R. (2004) Modified nucleotides at the 5' end of human U2 snRNA are required for spliceosomal E-complex formation. RNA, 10, 1925–1933.

    Article  PubMed  Google Scholar 

  31. Zhao, X. and Yu, Y.T. (2004) Pseudouridines in and near the branch site recognition region of U2 snRNA are required for snRNP biogenesis and pre-mRNA splicing in Xenopus oocytes. RNA, 10, 681–690.

    Article  PubMed  CAS  Google Scholar 

  32. Massenet, S. and Branlant, C. (1999) A limited number of pseudouridine residues in the human atac spliceosomal UsnRNAs as compared to human major spliceosomal UsnRNAs. RNA, 5, 1495–1503.

    Article  PubMed  CAS  Google Scholar 

  33. Ma, X., Yang, C., Alexandrov, A., Grayhack, E.J., Behm-Ansmant, I., and Yu, Y.T. (2005) Pseudouridylation of yeast U2 snRNA is catalyzed by either an RNA-guided or RNA-independent mechanism. EMBO J, 24, 2403–2413.

    Article  PubMed  CAS  Google Scholar 

  34. Ma, X., Zhao, X., and Yu, Y.T. (2003) Pseudouridylation (Psi) of U2 snRNA in S. cerevisiae is catalyzed by an RNA-independent mechanism. EMBO J, 22, 1889–1897.

    Article  PubMed  CAS  Google Scholar 

  35. Yang, C., McPheeters, D.S., and Yu, Y.T. (2005) Psi35 in the branch site recognition region of U2 small nuclear RNA is important for pre-mRNA splicing in Saccharomyces cerevisiae. J Biol Chem, 280, 6655–6662.

    Article  PubMed  CAS  Google Scholar 

  36. Lapeyre, B. (2005) Conserved Ribosomal RNA Modification and Their Putative Roles in Ribosome Biogenesis and Translation. Springer, Heidelberg/Berlin.

    Google Scholar 

  37. Decatur, W.A. and Fournier, M.J. (2002) rRNA modifications and ribosome function. Trends Biochem Sci, 27, 344–351.

    Article  PubMed  CAS  Google Scholar 

  38. Tollervey, D., Lehtonen, H., Jansen, R., Kern, H., and Hurt, E.C. (1993) Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly. Cell, 72, 443–457.

    Article  PubMed  CAS  Google Scholar 

  39. Zebarjadian, Y., King, T., Fournier, M.J., Clarke, L., and Carbon, J. (1999) Point mutations in yeast CBF5 can abolish in vivo pseudouridylation of rRNA. Mol Cell Biol, 19, 7461–7472.

    PubMed  CAS  Google Scholar 

  40. King, T.H., Liu, B., McCully, R.R., and Fournier, M.J. (2003) Ribosome structure and activity are altered in cells lacking snoRNPs that form pseudouridines in the peptidyl transferase center. Mol Cell, 11, 425–435.

    Article  PubMed  CAS  Google Scholar 

  41. Kim, D.F. and Green, R. (1999) Base-pairing between 23S rRNA and tRNA in the ribosomal A site. Mol Cell, 4, 859–864.

    Article  PubMed  CAS  Google Scholar 

  42. O’Connor, M. and Dahlberg, A.E. (1993) Mutations at U2555, a tRNA-protected base in 23S rRNA, affect translational fidelity. Proc Natl Acad Sci USA, 90, 9214–9218.

    Article  PubMed  Google Scholar 

  43. Piekna-Przybylska, D., Przybylski, P., Baudin-Baillieu, A., Rousset, J.P., and Fournier, M.J. (2008) Ribosome performance is enhanced by a rich cluster of pseudouridines in the A-site finger region of the large subunit. J Biol Chem, 283, 26026–26036.

    Article  PubMed  CAS  Google Scholar 

  44. Komoda, T., Sato, N.S., Phelps, S.S., Namba, N., Joseph, S., and Suzuki, T. (2006) The A-site finger in 23 S rRNA acts as a functional attenuator for translocation. J Biol Chem, 281, 32303–32309.

    Article  PubMed  CAS  Google Scholar 

  45. Bashan, A., Agmon, I., Zarivach, R., Schluenzen, F., Harms, J., Berisio, R., Bartels, H., Franceschi, F., Auerbach, T., Hansen, H.A. et al. (2003) Structural basis of the ribosomal machinery for peptide bond formation, translocation, and nascent chain progression. Mol Cell, 11, 91–102.

    Article  PubMed  CAS  Google Scholar 

  46. Cochella, L. and Green, R. (2005) An active role for tRNA in decoding beyond codon:anticodon pairing. Science, 308, 1178–1180.

    Article  PubMed  CAS  Google Scholar 

  47. Rodnina, M.V., Daviter, T., Gromadski, K., and Wintermeyer, W. (2002) Structural dynamics of ribosomal RNA during decoding on the ribosome. Biochimie, 84, 745–754.

    Article  PubMed  CAS  Google Scholar 

  48. Yusupov, M.M., Yusupova, G.Z., Baucom, A., Lieberman, K., Earnest, T.N., Cate, J.H., and Noller, H.F. (2001) Crystal structure of the ribosome at 5.5 Å resolution. Science, 292, 883–896.

    Article  PubMed  CAS  Google Scholar 

  49. Ofengand, J. (2002) Ribosomal RNA pseudouridines and pseudouridine synthases. FEBS Lett, 514, 17–25.

    Article  PubMed  CAS  Google Scholar 

  50. Raychaudhuri, S., Conrad, J., Hall, B.G., and Ofengand, J. (1998) A pseudouridine synthase required for the formation of two universally conserved pseudouridines in ribosomal RNA is essential for normal growth of Escherichia coli. RNA, 4, 1407–1417.

    Article  PubMed  CAS  Google Scholar 

  51. Huang, L., Ku, J., Pookanjanatavip, M., Gu, X., Wang, D., Greene, P.J., and Santi, D.V. (1998) Identification of two Escherichia coli pseudouridine synthases that show multisite specificity for 23S RNA. Biochemistry, 37, 15951–15957.

    Article  PubMed  CAS  Google Scholar 

  52. Bortolin, M.L. and Kiss, T. (1998) Human U19 intron-encoded snoRNA is processed from a long primary transcript that possesses little potential for protein coding. RNA, 4, 445–454.

    PubMed  CAS  Google Scholar 

  53. Badis, G., Fromont-Racine, M., and Jacquier, A. (2003) A snoRNA that guides the two most conserved pseudouridine modifications within rRNA confers a growth advantage in yeast. RNA, 9, 771–779.

    Article  PubMed  CAS  Google Scholar 

  54. Liang, X.-H., Liu, Q., and Fournier, M.J. (2007) rRNA modifications in an intersubunit bridge of the ribosome strongly affect both ribosome biogenesis and activity. Mol Cell, 28, 965–977.

    Article  PubMed  CAS  Google Scholar 

  55. Lowe, T.M. and Eddy, S.R. (1999) A computational screen for methylation guide snoRNAs in yeast. Science, 283, 1168–1171.

    Article  PubMed  CAS  Google Scholar 

  56. Esguerra, J., Warringer, J., and Blomberg, A. (2008) Functional importance of individual rRNA 2'-O-ribose methylations revealed by high-resolution phenotyping. RNA, 14, 649–656.

    Article  PubMed  CAS  Google Scholar 

  57. Grentzmann, G., Ingram, J.A., Kelly, P.J., Gesteland, R.F., and Atkins, J.F. (1998) A dual-luciferase reporter system for studying recoding signals. RNA, 4, 479–486.

    Article  PubMed  CAS  Google Scholar 

  58. Gesteland, R.F., Weiss, R.B., and Atkins, J.F. (1992) Recoding: reprogrammed genetic decoding. Science, 257, 1640–1641.

    Article  PubMed  CAS  Google Scholar 

  59. Baranov, P.V., Gurvich, O.L., Hammer, A.W., Gesteland, R.F., and Atkins, J.F. (2003) Recode 2003. Nucl Acids Res, 31, 87–89.

    Article  PubMed  CAS  Google Scholar 

  60. Baranov, P.V., Gesteland, R.F., and Atkins, J.F. (2002) Recoding: translational bifurcations in gene expression. Gene, 286, 187–201.

    Article  PubMed  CAS  Google Scholar 

  61. Namy, O., Rousset, J.P., Napthine, S., and Brierley, I. (2004) Reprogrammed genetic decoding in cellular gene expression. Mol Cell, 13, 157–168.

    Article  PubMed  CAS  Google Scholar 

  62. Harger, J.W. and Dinman, J.D. (2003) An in vivo dual-luciferase assay system for studying translational recoding in the yeast Saccharomyces cerevisiae. RNA, 9, 1019–1024.

    Article  PubMed  CAS  Google Scholar 

  63. Baxter-Roshek, J.L.P., Alexey N., and Dinman, J.D. (2006) Optimization of ribosome structure and function by rRNA base modification. PLoS ONE, 2, 174.

    Article  Google Scholar 

  64. Ruggero, D., Grisendi, S., Piazza, F., Rego, E., Mari, F., Rao, P.H., Cordon-Cardo, C., and Pandolfi, P.P. (2003) Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science, 299, 259–262.

    Article  PubMed  CAS  Google Scholar 

  65. Yoon, A., Peng, G., Brandenburger, Y., Zollo, O., Xu, W., Rego, E., and Ruggero, D. (2006) Impaired control of IRES-mediated translation in X-linked dyskeratosis congenita. Science, 312, 902–906.

    Article  PubMed  CAS  Google Scholar 

  66. Longley, D.B., Harkin, D.P., and Johnston, P.G. (2003) 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer, 3, 330–338.

    Article  PubMed  CAS  Google Scholar 

  67. Ghoshal, K. and Jacob, S.T. (1997) An alternative molecular mechanism of action of 5-fluorouracil, a potent anticancer drug. Biochem Pharmacol, 53, 1569–1575.

    Article  PubMed  CAS  Google Scholar 

  68. Parker, W.B. and Cheng, Y.C. (1990) Metabolism and mechanism of action of 5-fluorouracil. Pharmacol Ther, 48, 381–395.

    Article  PubMed  CAS  Google Scholar 

  69. Greenhalgh, D.A. and Parish, J.H. (1989) Effects of 5-fluorouracil on cytotoxicity and RNA metabolism in human colonic carcinoma cells. Cancer Chemother Pharmacol, 25, 37–44.

    Article  PubMed  CAS  Google Scholar 

  70. Herrick, D. and Kufe, D.W. (1984) Lethality associated with incorporation of 5-fluorouracil into preribosomal RNA. Mol Pharmacol, 26, 135–140.

    PubMed  CAS  Google Scholar 

  71. Cory, J.G., Breland, J.C., and Carter, G.L. (1979) Effect of 5-fluorouracil on RNA metabolism in Novikoff hepatoma cells. Cancer Res, 39, 4905–4913.

    PubMed  CAS  Google Scholar 

  72. Greenhalgh, D.A. and Parish, J.H. (1990) Effect of 5-fluorouracil combination therapy on RNA processing in human colonic carcinoma cells. Br J Cancer, 61, 415–419.

    Article  PubMed  CAS  Google Scholar 

  73. Zhao, X. and Yu, Y.T. (2007) Incorporation of 5-fluorouracil into U2 snRNA blocks pseudouridylation and pre-mRNA splicing in vivo. Nucl Acids Res, 35, 550–558.

    Article  PubMed  CAS  Google Scholar 

  74. Hoskins, J. and Butler, J.S. (2008) RNA-based 5-fluorouracil toxicity requires the pseudouridylation activity of Cbf5p. Genetics, 179, 323–330.

    Article  PubMed  CAS  Google Scholar 

  75. Agris, P.F. (1996) The importance of being modified: roles of modified nucleosides and Mg2+ in RNA structure and function. Prog Nucl Acid Res Mol Biol, 53, 79–129.

    Article  CAS  Google Scholar 

  76. Davis, D.R. (1995) Stabilization of RNA stacking by pseudouridine. Nucl Acids Res, 23, 5020–5026.

    Article  PubMed  CAS  Google Scholar 

  77. Arnez, J.G. and Steitz, T.A. (1994) Crystal structure of unmodified tRNA(Gln) complexed with glutaminyl-tRNA synthetase and ATP suggests a possible role for pseudo-uridines in stabilization of RNA structure. Biochemistry, 33, 7560–7567.

    Article  PubMed  CAS  Google Scholar 

  78. Auffinger, P. and Westhof, E. (1997) Rules governing the orientation of the 2'-hydroxyl group in RNA. J Mol Biol, 274, 54–63.

    Article  PubMed  CAS  Google Scholar 

  79. Auffinger, P. and Westhof, E. (1998) Hydration of RNA base pairs. J Biomol Struct Dyn, 16, 693–707.

    PubMed  CAS  Google Scholar 

  80. Helm, M. (2006) Post-transcriptional nucleotide modification and alternative folding of RNA. Nucl Acids Res, 34, 721–733.

    Article  PubMed  CAS  Google Scholar 

  81. Noon, K.R., Bruenger, E., and McCloskey, J.A. (1998) Posttranscriptional modifications in 16S and 23S rRNAs of the archaeal hyperthermophile Sulfolobus solfataricus. J Bacteriol, 180, 2883–2888.

    PubMed  CAS  Google Scholar 

  82. Agris, P.F., Koh, H., and Soll, D. (1973) The effect of growth temperatures on the in vivo ribose methylation of Bacillus stearothermophilus transfer RNA. Arch Biochem Biophys, 154, 277–282.

    Article  PubMed  CAS  Google Scholar 

  83. Kowalak, J.A., Dalluge, J.J., McCloskey, J.A., and Stetter, K.O. (1994) The role of posttranscriptional modification in stabilization of transfer RNA from hyperthermophiles. Biochemistry, 33, 7869–7876.

    Article  PubMed  CAS  Google Scholar 

  84. Berglund, J.A., Rosbash, M., and Schultz, S.C. (2001) Crystal structure of a model branchpoint-U2 snRNA duplex containing bulged adenosines. RNA, 7, 682–691.

    Article  PubMed  CAS  Google Scholar 

  85. Newby, M.I. and Greenbaum, N.L. (2001) A conserved pseudouridine modification in eukaryotic U2 snRNA induces a change in branch-site architecture. RNA, 7, 833–845.

    Article  PubMed  CAS  Google Scholar 

  86. Newby, M.I. and Greenbaum, N.L. (2002) Sculpting of the spliceosomal branch site recognition motif by a conserved pseudouridine. Nat Struct Biol, 9, 958–965.

    Article  PubMed  CAS  Google Scholar 

  87. Lin, Y. and Kielkopf, C.L. (2008) X-ray structures of U2 snRNA-branchpoint duplexes containing conserved pseudouridines. Biochemistry, 47, 5503–5514.

    Article  PubMed  CAS  Google Scholar 

  88. Valadkhan, S. and Manley, J.L. (2001) Splicing-related catalysis by protein-free snRNAs. Nature, 413, 701–707.

    Article  PubMed  CAS  Google Scholar 

  89. Valadkhan, S. and Manley, J.L. (2003) Characterization of the catalytic activity of U2 and U6 snRNAs. RNA, 9, 892–904.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the members of the Yu lab for insightful discussions. Our work was supported by grant GM62937 (to Yi-Tao Yu) from the National Institute of Health. John Karijolich was supported by a NIH Institutional Ruth L. Kirschstein National Research Service Award GM068411.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Karijolich, J., Kantartzis, A., Yu, YT. (2010). RNA Modifications: A Mechanism that Modulates Gene Expression. In: Sioud, M. (eds) RNA Therapeutics. Methods in Molecular Biology, vol 629. Humana Press. https://doi.org/10.1007/978-1-60761-657-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-657-3_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-656-6

  • Online ISBN: 978-1-60761-657-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics