Skip to main content

Potential Therapeutic Application of Host Defense Peptides

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 618))

Abstract

Host defense peptides (HDPs) are relatively small, mostly cationic, amphipathic, and of variable length, sequence, and structure. The majority of these peptides exhibit broad-spectrum antimicrobial activity and often activity against viruses and some cancer cell lines. In addition, HDPs also provide a range of immunomodulatory activities related to innate immunity defense, inflammation, and wound healing. The development of these multi-faceted molecules and their bioactivities into clinically important therapeutics is being pursued using a number of different approaches. Here we review the role of HDPs in nature and application of this role to the development of novel therapeutics.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Reddy, K. V., Yedery, R. D., and Aranha, C. (2004) Antimicrobial peptides: premises and promises. Int. J. Antimicrob. Agents 24, 536–547.

    Article  PubMed  CAS  Google Scholar 

  2. Hancock, R. E. (1997) Peptide antibiotics. Lancet 349, 418–422.

    Article  PubMed  CAS  Google Scholar 

  3. Toke, O. (2005) Antimicrobial peptides: new candidates in the fight against bacterial infections. Biopolymers 80, 717–735.

    Article  PubMed  CAS  Google Scholar 

  4. Toke, O., Cegelski, L., and Schaefer, J. (2006) Peptide antibiotics in action: investigation of polypeptide chains in insoluble environments by rotational-echo double resonance. Biochim. Biophys. Acta 1758, 1314–1329.

    Article  PubMed  CAS  Google Scholar 

  5. Selsted, M. E., Novotny, M. J., Morris, W. L., Tang, Y. Q., Smith, W., and Cullor, J. S. (1992) Indolicidin, a novel bactericidal tridecapeptide amide from neutrophils. J. Biol. Chem. 267, 4292–4295.

    PubMed  CAS  Google Scholar 

  6. Rozek, A., Friedrich, C. L., and Hancock, R. E. (2000) Structure of the bovine antimicrobial peptide indolicidin bound to dodecylphosphocholine and sodium dodecyl sulfate micelles. Biochemistry 39, 15765–15774.

    Article  PubMed  CAS  Google Scholar 

  7. Askou, H. J., Jakobsen, R. N., and Fojan, P. (2008) An atomic force microscopy study of the interactions between indolicidin and supported planar bilayers. J. Nanosci. Nanotechnol. 8, 4360–4369.

    Article  PubMed  CAS  Google Scholar 

  8. Shaw, J. E., Alattia, J. R., Verity, J. E., Prive, G. G., and Yip, C. M. (2006) Mechanisms of antimicrobial peptide action: studies of indolicidin assembly at model membrane interfaces by in situ atomic force microscopy. J. Struct. Biol. 154, 42–58.

    Article  PubMed  CAS  Google Scholar 

  9. Shaw, J. E., Epand, R. F., Hsu, J. C., Mo, G. C., Epand, R. M., and Yip, C. M. (2008) Cationic peptide-induced remodelling of model membranes: direct visualization by in situ atomic force microscopy. J. Struct. Biol. 162, 121–138.

    Article  PubMed  CAS  Google Scholar 

  10. Otvos, L., Jr. (2005) Antibacterial peptides and proteins with multiple cellular targets. J. Pept. Sci. 11, 697–706.

    Article  PubMed  CAS  Google Scholar 

  11. Selsted, M. E. and Ouellette, A. J. (2005) Mammalian defensins in the antimicrobial immune response. Nat. Immunol. 6, 551–557.

    Article  PubMed  CAS  Google Scholar 

  12. Radhakrishnan, Y., Hamil, K. G., Yenugu, S., Young, S. L., French, F. S., and Hall, S. H. (2005) Identification, characterization, and evolution of a primate beta-defensin gene cluster. Genes Immun. 6, 203–210.

    Article  PubMed  CAS  Google Scholar 

  13. Zanetti, M., Gennaro, R., and Romeo, D. (1995) Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett. 374, 1–5.

    Article  PubMed  CAS  Google Scholar 

  14. Nizet, V. and Gallo, R. L. (2003) Cathelicidins and innate defense against invasive bacterial infection. Scand. J. Infect. Dis. 35, 670–676.

    Article  PubMed  CAS  Google Scholar 

  15. Hilton, K. B. and Lambert, L. A. (2008) Molecular evolution and characterization of hepcidin gene products in vertebrates. Gene 415, 40–48.

    Article  PubMed  CAS  Google Scholar 

  16. Rieg, S., Steffen, H., Seeber, S., et al. (2005) Deficiency of dermcidin-derived antimicrobial peptides in sweat of patients with atopic dermatitis correlates with an impaired innate defense of human skin in vivo. J. Immunol. 174, 8003–8010.

    PubMed  CAS  Google Scholar 

  17. Oppenheim, F. G., Xu, T., McMillian, F. M., et al. (1988) Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans. J. Biol. Chem. 263, 7472–7477.

    PubMed  CAS  Google Scholar 

  18. Chan, D. I., Hunter, H. N., Tack, B. F., and Vogel, H. J. (2008) Human macrophage inflammatory protein 3alpha: protein and peptide nuclear magnetic resonance solution structures, dimerization, dynamics, and anti-infective properties. Antimicrob. Agents Chemother. 52, 883–894.

    Article  PubMed  CAS  Google Scholar 

  19. Maerki, C., Meuter, S., Liebi, M., et al. (2009) Potent and broad-spectrum antimicrobial activity of CXCL14 suggests an immediate role in skin infections. J. Immunol. 182, 507–514.

    PubMed  CAS  Google Scholar 

  20. Radek, K. A., Lopez-Garcia, B., Hupe, M., et al. (2008) The neuroendocrine peptide catestatin is a cutaneous antimicrobial and induced in the skin after injury. J. Invest. Dermatol. 128, 1525–1534.

    Article  PubMed  CAS  Google Scholar 

  21. Egesten, A., Eliasson, M., Johansson, H. M., et al. (2007) The CXC chemokine MIG/CXCL9 is important in innate immunity against Streptococcus pyogenes. J. Infect. Dis. 195, 684–693.

    Article  PubMed  CAS  Google Scholar 

  22. Eliasson, M., Frick, I. M., Collin, M., Sorensen, O. E., Bjorck, L., and Egesten, A. (2007) M1 protein of Streptococcus pyogenes increases production of the antibacterial CXC chemokine MIG/CXCL9 in pharyngeal epithelial cells. Microb. Pathog. 43, 224–233.

    Article  PubMed  CAS  Google Scholar 

  23. Linge, H. M., Collin, M., Nordenfelt, P., Morgelin, M., Malmsten, M., and Egesten, A. (2008) The human CXC chemokine granulocyte chemotactic protein 2 (GCP-2)/CXCL6 possesses membrane-disrupting properties and is antibacterial. Antimicrob. Agents Chemother. 52, 2599–2607.

    Article  PubMed  CAS  Google Scholar 

  24. Collin, M., Linge, H. M., Bjartell, A., Giwercman, A., Malm, J., and Egesten, A. (2008) Constitutive expression of the antibacterial CXC chemokine GCP-2/CXCL6 by epithelial cells of the male reproductive tract. J. Reprod. Immunol. 79, 37–43.

    Article  PubMed  CAS  Google Scholar 

  25. Linge, H. M., Collin, M., Giwercman, A., Malm, J., Bjartell, A., and Egesten, A. (2008) The antibacterial chemokine MIG/CXCL9 is constitutively expressed in epithelial cells of the male urogenital tract and is present in seminal plasma. J. Interferon Cytokine Res. 28, 191–196.

    Article  PubMed  CAS  Google Scholar 

  26. Di Nardo, A., Yamasaki, K., Dorschner, R. A., Lai, Y., and Gallo, R. L. (2008) Mast cell cathelicidin antimicrobial peptide prevents invasive group A Streptococcus infection of the skin. J. Immunol. 180, 7565–7573.

    PubMed  CAS  Google Scholar 

  27. De Benedetto, A., Agnihothri, R., McGirt, L. Y., Bankova, L. G., and Beck, L. A. (2009) Atopic dermatitis: a disease caused by innate immune defects? J. Invest. Dermatol. 129, 14–30.

    Article  PubMed  CAS  Google Scholar 

  28. Howell, M. D., Wollenberg, A., Gallo, R. L., et al. (2006) Cathelicidin deficiency predisposes to eczema herpeticum. J. Allergy Clin. Immunol. 117, 836–841.

    Article  PubMed  CAS  Google Scholar 

  29. Howell, M. D., Jones, J. F., Kisich, K. O., Streib, J. E., Gallo, R. L., and Leung, D. Y. (2004) Selective killing of vaccinia virus by LL-37: implications for eczema vaccinatum. J. Immunol. 172, 1763–1767.

    PubMed  CAS  Google Scholar 

  30. Lee, P. H., Ohtake, T., Zaiou, M., et al. (2005) Expression of an additional cathelicidin antimicrobial peptide protects against bacterial skin infection. Proc. Natl. Acad. Sci. USA 102, 3750–3755.

    Article  PubMed  CAS  Google Scholar 

  31. Schittek, B., Paulmann, M., Senyurek, I., and Steffen, H. (2008) The role of antimicrobial peptides in human skin and in skin infectious diseases. Infect. Disord. Drug Targets 8, 135–143.

    Article  PubMed  CAS  Google Scholar 

  32. Lee, D. Y., Yamasaki, K., Rudsil, J., et al. (2008) Sebocytes express functional cathelicidin antimicrobial peptides and can act to kill Propionibacterium acnes. J. Invest. Dermatol. 128, 1863–1866.

    Article  PubMed  CAS  Google Scholar 

  33. McInturff, J. E., Wang, S. J., Machleidt, T., et al. (2005) Granulysin-derived peptides demonstrate antimicrobial and anti-inflammatory effects against Propionibacterium acnes. J. Invest. Dermatol. 125, 256–263.

    Article  PubMed  CAS  Google Scholar 

  34. Temple, M. E. and Nahata, M. C. (2000) Pharmacotherapy of lower limb diabetic ulcers. J. Am. Geriatr. Soc. 48, 822–888.

    PubMed  CAS  Google Scholar 

  35. Iwatsuki, K., Yamasaki, O., Morizane, S., and Oono, T. (2006) Staphylococcal cutaneous infections: invasion, evasion and aggression. J. Dermatol. Sci. 42, 203–214.

    Article  PubMed  CAS  Google Scholar 

  36. Jacobsen, F., Mohammadi-Tabrisi, A., Hirsch, T., et al. (2007) Antimicrobial activity of the recombinant designer host defence peptide P-novispirin G10 in infected full-thickness wounds of porcine skin. J. Antimicrob. Chemother. 59, 493–498.

    Article  PubMed  CAS  Google Scholar 

  37. Lamb, H. M. and Wiseman, L. R. (1998) Pexiganan acetate. Drugs 56, 1047–1052, discussion 1053–1054.

    Article  PubMed  CAS  Google Scholar 

  38. Lipsky, B. A., Holroyd, K. J., and Zasloff, M. (2008) Topical versus systemic antimicrobial therapy for treating mildly infected diabetic foot ulcers: a randomized, controlled, double-blinded, multicenter trial of pexiganan cream. Clin. Infect. Dis. 47, 1537–1545.

    Article  PubMed  Google Scholar 

  39. Chung, W. O., Dommisch, H., Yin, L., and Dale, B. A. (2007) Expression of defensins in gingiva and their role in periodontal health and disease. Curr. Pharm. Des. 13, 3073–3083.

    Article  PubMed  CAS  Google Scholar 

  40. Aas, J. A., Paster, B. J., Stokes, L. N., Olsen, I., and Dewhirst, F. E. (2005) Defining the normal bacterial flora of the oral cavity. J. Clin. Microbiol. 43, 5721–5732.

    Article  PubMed  Google Scholar 

  41. Dale, B. A. and Fredericks, L. P. (2005) Antimicrobial peptides in the oral environment: expression and function in health and disease. Curr. Issues Mol. Biol. 7, 119–133.

    PubMed  CAS  Google Scholar 

  42. Vankeerberghen, A., Nuytten, H., Dierickx, K., Quirynen, M., Cassiman, J. J., and Cuppens, H. (2005) Differential induction of human beta-defensin expression by periodontal commensals and pathogens in periodontal pocket epithelial cells. J. Periodontol. 76, 1293–1303.

    Article  PubMed  CAS  Google Scholar 

  43. Putsep, K., Carlsson, G., Boman, H. G., and Andersson, M. (2002) Deficiency of antibacterial peptides in patients with morbus Kostmann: an observation study. Lancet 360, 1144–1149.

    Article  PubMed  CAS  Google Scholar 

  44. Beckloff, N., Laube, D., Castro, T., et al. (2007) Activity of an antimicrobial peptide mimetic against planktonic and biofilm cultures of oral pathogens. Antimicrob. Agents Chemother. 51, 4125–4132.

    Article  PubMed  CAS  Google Scholar 

  45. Faraj, J. A., Dorati, R., Schoubben, A., et al. (2007) Development of a peptide-containing chewing gum as a sustained release antiplaque antimicrobial delivery system. AAPS PharmSciTech 8, 26.

    Article  PubMed  Google Scholar 

  46. Tanida, T., Okamoto, T., Okamoto, A., et al. (2003) Decreased excretion of antimicrobial proteins and peptides in saliva of patients with oral candidiasis. J. Oral Pathol. Med. 32, 586–594.

    Article  PubMed  CAS  Google Scholar 

  47. Meyer, J. E., Harder, J., Gorogh, T., et al. (2004) Human beta-defensin-2 in oral cancer with opportunistic Candida infection. Anticancer Res. 24, 1025–1030.

    PubMed  CAS  Google Scholar 

  48. Helmerhorst, E. J., Reijnders, I. M., van’t Hof, W., Simoons-Smit, I., Veerman, E. C., and Amerongen, A. V. (1999) Amphotericin B- and fluconazole-resistant Candida spp., Aspergillus fumigatus, and other newly emerging pathogenic fungi are susceptible to basic antifungal peptides. Antimicrob. Agents Chemother. 43, 702–704.

    PubMed  CAS  Google Scholar 

  49. Yin, A., Margolis, H. C., Grogan, J., Yao, Y., Troxler, R. F., and Oppenheim, F. G. (2003) Physical parameters of hydroxyapatite adsorption and effect on candidacidal activity of histatins. Arch. Oral Biol. 48, 361–368.

    Article  PubMed  CAS  Google Scholar 

  50. Castagnola, M., Inzitari, R., Rossetti, D. V., et al. (2004) A cascade of 24 histatins (histatin 3 fragments) in human saliva. Suggestions for a pre-secretory sequential cleavage pathway. J. Biol. Chem. 279, 41436–41443.

    Article  PubMed  CAS  Google Scholar 

  51. Torres, S. R., Garzino-Demo, A., Meiller, T. F., Meeks, V., and Jabra-Rizk, M. A. (2009) Salivary histatin-5 and oral fungal colonisation in HIV+ individuals. Mycoses 52, 11–15.

    Article  PubMed  CAS  Google Scholar 

  52. Rothstein, D. M., Spacciapoli, P., Tran, L. T., et al. (2001) Anticandida activity is retained in P-113, a 12-amino-acid fragment of histatin 5. Antimicrob. Agents Chemother. 45, 1367–1373.

    Article  PubMed  CAS  Google Scholar 

  53. Hiemstra, P. S. (2007) The role of epithelial beta-defensins and cathelicidins in host defense of the lung. Exp. Lung Res. 33, 537–542.

    Article  PubMed  CAS  Google Scholar 

  54. Bals, R., Wang, X., Wu, Z., et al. (1998) Human beta-defensin 2 is a salt-sensitive peptide antibiotic expressed in human lung. J. Clin. Invest. 102, 874–880.

    Article  PubMed  CAS  Google Scholar 

  55. Cheung, Q. C., Turner, P. V., Song, C., et al. (2008) Enhanced resistance to bacterial infection in protegrin-1 transgenic mice. Antimicrob. Agents Chemother. 52, 1812–1819.

    Article  PubMed  CAS  Google Scholar 

  56. Zhang, L., Parente, J., Harris, S. M., Woods, D. E., Hancock, R. E., and Falla, T. J. (2005) Antimicrobial peptide therapeutics for cystic fibrosis. Antimicrob. Agents Chemother. 49, 2921–2927.

    Article  PubMed  CAS  Google Scholar 

  57. Falagas, M. E., Kasiakou, S. K., Tsiodras, S., and Michalopoulos, A. (2006) The use of intravenous and aerosolized polymyxins for the treatment of infections in critically ill patients: a review of the recent literature. Clin. Med. Res. 4, 138–146.

    Article  PubMed  CAS  Google Scholar 

  58. Vallon-Eberhard, A., Makovitzki, A., Beauvais, A., Latge, J. P., Jung, S., and Shai, Y. (2008) Efficient clearance of Aspergillus fumigatus in murine lungs by an ultrashort antimicrobial lipopeptide, palmitoyl-lys-ala-DAla-lys. Antimicrob. Agents Chemother. 52, 3118–3126.

    Article  PubMed  CAS  Google Scholar 

  59. Wang, G., Stange, E. F., and Wehkamp, J. (2007) Host-microbe interaction: mechanisms of defensin deficiency in Crohn’s disease. Expert Rev. Anti-infect. Ther. 5, 1049–1057.

    Article  PubMed  CAS  Google Scholar 

  60. Wehkamp, J., Koslowski, M., Wang, G., and Stange, E. F. (2008) Barrier dysfunction due to distinct defensin deficiencies in small intestinal and colonic Crohn’s disease. Mucosal Immunol. 1(Suppl 1), S67–S74.

    Article  PubMed  CAS  Google Scholar 

  61. Chakraborty, K., Ghosh, S., Kole, H., et al. (2008) Bacterial exotoxins downregulate cathelicidin (hCAP18/LL37) and human beta-defensin 1 (HBD-1) expression in the intestinal epithelial cells. Cell Microbiol. 10, 2520–2537.

    Article  PubMed  CAS  Google Scholar 

  62. Iqbal, S. M. and Kaul, R. (2008) Mucosal innate immunity as a determinant of HIV susceptibility. Am. J. Reprod. Immunol. 59, 44–54.

    Article  PubMed  CAS  Google Scholar 

  63. Kaul, R., Pettengell, C., Sheth, P. M., et al. (2008) The genital tract immune milieu: an important determinant of HIV susceptibility and secondary transmission. J. Reprod. Immunol. 77, 32–40.

    Article  PubMed  CAS  Google Scholar 

  64. Valore, E. V., Wiley, D. J., and Ganz, T. (2006) Reversible deficiency of antimicrobial polypeptides in bacterial vaginosis. Infect. Immun. 74, 5693–5702.

    Article  PubMed  CAS  Google Scholar 

  65. Zapata, W., Rodriguez, B., Weber, J., et al. (2008) Increased levels of human beta-defensins mRNA in sexually HIV-1 exposed but uninfected individuals. Curr. HIV Res. 6, 531–538.

    Article  PubMed  CAS  Google Scholar 

  66. Cole, A. M. and Cole, A. L. (2008) Antimicrobial polypeptides are key anti-HIV-1 effector molecules of cervicovaginal host defense. Am. J. Reprod. Immunol. 59, 27–34.

    Article  PubMed  CAS  Google Scholar 

  67. Bergman, P., Walter-Jallow, L., Broliden, K., Agerberth, B., and Soderlund, J. (2007) The antimicrobial peptide LL-37 inhibits HIV-1 replication. Curr. HIV Res. 5, 410–415.

    Article  PubMed  CAS  Google Scholar 

  68. Cole, A. M., Hong, T., Boo, L. M., et al. (2002) Retrocyclin: a primate peptide that protects cells from infection by T- and M-tropic strains of HIV-1. Proc. Natl. Acad. Sci. USA 99, 1813–1818.

    Article  PubMed  CAS  Google Scholar 

  69. Cole, A. L., Herasimtschuk, A., Gupta, P., Waring, A. J., Lehrer, R. I., and Cole, A. M. (2007) The retrocyclin analogue RC-101 prevents human immunodeficiency virus type 1 infection of a model human cervicovaginal tissue construct. Immunology 121, 140–145.

    Article  PubMed  CAS  Google Scholar 

  70. Aranha, C. C., Gupta, S. M., and Reddy, K. V. (2008) Assessment of cervicovaginal cytokine levels following exposure to microbicide Nisin gel in rabbits. Cytokine 43, 63–70.

    Article  PubMed  CAS  Google Scholar 

  71. Donald, C. D., Sun, C. Q., Lim, S. D., et al. (2003) Cancer-specific loss of beta-defensin 1 in renal and prostatic carcinomas. Lab. Invest. 83, 501–505.

    PubMed  CAS  Google Scholar 

  72. Sun, C. Q., Arnold, R., Fernandez-Golarz, C., et al. (2006) Human beta-defensin-1, a potential chromosome 8p tumor suppressor: control of transcription and induction of apoptosis in renal cell carcinoma. Cancer Res. 66, 8542–8549.

    Article  PubMed  CAS  Google Scholar 

  73. Bullard, R. S., Gibson, W., Bose, S. K., et al. (2008) Functional analysis of the host defense peptide Human Beta Defensin-1: new insight into its potential role in cancer. Mol. Immunol. 45, 839–848.

    Article  PubMed  CAS  Google Scholar 

  74. Gibson, W., Green, A., Bullard, R. S., Eaddy, A. C., and Donald, C. D. (2007) Inhibition of PAX2 expression results in alternate cell death pathways in prostate cancer cells differing in p53 status. Cancer Lett. 248, 251–261.

    Article  PubMed  CAS  Google Scholar 

  75. Bose, S. K., Gibson, W., Bullard, R. S., and Donald, C. D. (2008) PAX2 oncogene negatively regulates the expression of the host defense peptide human beta defensin-1 in prostate cancer. Mol. Immunol. 46, 1140–1148.

    Article  PubMed  CAS  Google Scholar 

  76. Baker, M. A., Maloy, W. L., Zasloff, M., and Jacob, L. S. (1993) Anticancer efficacy of Magainin 2 and analogue peptides. Cancer Res. 53, 3052–3057.

    PubMed  CAS  Google Scholar 

  77. Hansel, W., Leuschner, C., and Enright, F. (2007) Conjugates of lytic peptides and LHRH or betaCG target and cause necrosis of prostate cancers and metastases. Mol. Cell Endocrinol. 269, 26–33.

    Article  PubMed  CAS  Google Scholar 

  78. Leuschner, C., Enright, F. M., Gawronska, B., and Hansel, W. (2003) Membrane disrupting lytic peptide conjugates destroy hormone dependent and independent breast cancer cells in vitro and in vivo. Breast Cancer Res. Treat. 78, 17–27.

    Article  PubMed  CAS  Google Scholar 

  79. Ghavami, S., Asoodeh, A., Klonisch, T., et al. (2008) Brevinin-2R(1) semi-selectively kills cancer cells by a distinct mechanism, which involves the lysosomal-mitochondrial death pathway. J. Cell. Mol. Med. 12, 1005–1022.

    Article  PubMed  CAS  Google Scholar 

  80. Suttmann, H., Retz, M., Paulsen, F., et al. (2008) Antimicrobial peptides of the Cecropin-family show potent antitumor activity against bladder cancer cells. BMC Urol. 8, 5.

    Article  PubMed  CAS  Google Scholar 

  81. Rodrigues, E. G., Dobroff, A. S., Cavarsan, C. F., et al. (2008) Effective topical treatment of subcutaneous murine B16F10-Nex2 melanoma by the antimicrobial peptide gomesin. Neoplasia 10, 61–68.

    Article  PubMed  CAS  Google Scholar 

  82. Xu, N., Wang, Y. S., Pan, W. B., et al. (2008) Human alpha-defensin-1 inhibits growth of human lung adenocarcinoma xenograft in nude mice. Mol. Cancer Ther. 7, 1588–1597.

    Article  PubMed  CAS  Google Scholar 

  83. Yang, D., Chertov, O., and Oppenheim, J. J. (2001) Participation of mammalian defensins and cathelicidins in anti-microbial immunity: receptors and activities of human defensins and cathelicidin (LL-37). J. Leukoc. Biol. 69, 691–697.

    PubMed  CAS  Google Scholar 

  84. Niyonsaba, F., Suzuki, A., Ushio, H., Nagaoka, I., Ogawa, H., and Okumura, K. (2008) The human antimicrobial peptide dermcidin activates normal human keratinocytes. Br. J. Dermatol. 160, 243–249.

    Article  PubMed  CAS  Google Scholar 

  85. Mookherjee, N., Brown, K. L., Bowdish, D. M., et al. (2006) Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J. Immunol. 176, 2455–2464.

    PubMed  CAS  Google Scholar 

  86. Mookherjee, N., Rehaume, L. M., and Hancock, R. E. (2007) Cathelicidins and functional analogues as antisepsis molecules. Expert Opin. Ther. Targets 11, 993–1004.

    Article  PubMed  CAS  Google Scholar 

  87. Book, M., Chen, Q., Lehmann, L. E., et al. (2007) Inducibility of the endogenous antibiotic peptide beta-defensin 2 is impaired in patients with severe sepsis. Crit. Care 11, R19.

    Article  PubMed  Google Scholar 

  88. Torossian, A., Gurschi, E., Bals, R., Vassiliou, T., Wulf, H. F., and Bauhofer, A. (2007) Effects of the antimicrobial peptide LL-37 and hyperthermic preconditioning in septic rats. Anesthesiology 107, 437–441.

    Article  PubMed  CAS  Google Scholar 

  89. Di Nardo, A., Braff, M. H., Taylor, K. R., et al. (2007) Cathelicidin antimicrobial peptides block dendritic cell TLR4 activation and allergic contact sensitization. J. Immunol. 178, 1829–1834.

    PubMed  CAS  Google Scholar 

  90. Deslouches, B., Gonzalez, I. A., De Almeida, D., et al. (2007) De novo-derived cationic antimicrobial peptide activity in a murine model of Pseudomonas aeruginosa bacteraemia. J. Antimicrob. Chemother. 60, 669–672.

    Article  PubMed  CAS  Google Scholar 

  91. Wakabayashi, H., Takakura, N., Yamauchi, K., and Tamura, Y. (2006) Modulation of immunity-related gene expression in small intestines of mice by oral administration of lactoferrin. Clin. Vaccine Immunol. 13, 239–245.

    Article  PubMed  CAS  Google Scholar 

  92. Lienkamp, K., Madkour, A. E., Musante, A., Nelson, C. F., Nusslein, K., and Tew, G. N. (2008) Antimicrobial polymers prepared by ROMP with unprecedented selectivity: a molecular construction kit approach. J. Am. Chem. Soc. 130, 9836–9843.

    Article  PubMed  CAS  Google Scholar 

  93. Statz, A. R., Park, J. P., Chongsiriwatana, N. P., Barron, A. E., and Messersmith, P. B. (2008) Surface-immobilised antimicrobial peptoids. Biofouling 24, 439–448.

    Article  PubMed  CAS  Google Scholar 

  94. Willcox, M. D., Hume, E. B., Aliwarga, Y., Kumar, N., and Cole, N. (2008) A novel cationic-peptide coating for the prevention of microbial colonization on contact lenses. J. Appl. Microbiol. 105, 1817–1825.

    Article  PubMed  CAS  Google Scholar 

  95. Lai, X. Z., Feng, Y., Pollard, J., et al. (2008) Ceragenins: cholic acid-based mimics of antimicrobial peptides. Acc. Chem. Res. 41, 1233–1240.

    Article  PubMed  CAS  Google Scholar 

  96. Epand, R. F., Savage, P. B., and Epand, R. M. (2007) Bacterial lipid composition and the antimicrobial efficacy of cationic steroid compounds (Ceragenins). Biochim. Biophys. Acta. 1768, 2500–2509.

    Article  PubMed  CAS  Google Scholar 

  97. Chin, J. N., Rybak, M. J., Cheung, C. M., and Savage, P. B. (2007) Antimicrobial activities of ceragenins against clinical isolates of resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 51, 1268–1273.

    Article  PubMed  CAS  Google Scholar 

  98. Van Bambeke, F., Mingeot-Leclercq, M. P., Struelens, M. J., and Tulkens, P. M. (2008) The bacterial envelope as a target for novel anti-MRSA antibiotics. Trends Pharmacol. Sci. 29, 124–134.

    Article  PubMed  CAS  Google Scholar 

  99. Rotem, S. and Mor, A. (2009) Antimicrobial peptide mimics for improved therapeutic properties. Biochim. Biophys. Acta 1788, 1582–1592.

    PubMed  Google Scholar 

  100. Sarig, H., Rotem, S., Ziserman, L., Danino, D., and Mor, A. (2008) Impact of self-assembly properties on antibacterial activity of short acyl-lysine oligomers. Antimicrob. Agents Chemother. 52, 4308–4314.

    Article  PubMed  CAS  Google Scholar 

  101. Fritsche, T. R., Rhomberg, P. R., Sader, H. S., and Jones, R. N. (2008) Antimicrobial activity of omiganan pentahydrochloride against contemporary fungal pathogens responsible for catheter-associated infections. Antimicrob. Agents Chemother. 52, 1187–1189.

    Article  PubMed  CAS  Google Scholar 

  102. van den Berg, H. R., Khan, N. A., van der Zee, M., et al. (2009) Synthetic oligopeptides related to the [beta]-subunit of human chorionic gonadotropin attenuate inflammation and liver damage after (trauma) hemorrhagic shock and resuscitation. Shock 31, 285–291.

    Article  PubMed  CAS  Google Scholar 

  103. Benner, R. and Khan, N. A. (2005) Dissection of systems, cell populations and molecules. Scand. J. Immunol. 62(Suppl 1), 62–66.

    Article  PubMed  CAS  Google Scholar 

  104. Falla, T., Harris, S. M., and Zhang, L. (2007) Novel antiinfective for the treatment and prevention of wound infection, ASM Biodefense and emerging diseases, Washington, DC, February 27th–March 2nd.

    Google Scholar 

  105. Zhang, L., Harris, S. M., and Falla, T. J. (2007) Lipohexapeptides as topical therapeutics for fungal infections, 107th American Society of Microbiology General Meeting, Toronto Canada, May 21–25.

    Google Scholar 

  106. Mygind, P. H., Fischer, R. L., Schnorr, K. M., et al. (2005) Plectasin is a peptide antibiotic with therapeutic potential from a saprophytic fungus. Nature 437, 975–980.

    Article  PubMed  CAS  Google Scholar 

  107. Ostergaard, C., Sandvang, D., Frimodt-Moller, N., and Kristensen, H. H. (2009) High CSF penetration and potent CSF bactericidal activity of NZ2114 – a novel Plectasin variant – during experimental pneumococcal meningitis. Antimicrob. Agents Chemother. 53, 1581–1585.

    Article  PubMed  CAS  Google Scholar 

  108. Robinson, J. A., Shankaramma, S. C., Jetter, P., et al. (2005) Properties and structure-activity studies of cyclic beta-hairpin peptidomimetics based on the cationic antimicrobial peptide protegrin I. Bioorg. Med. Chem. 13, 2055–2064.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Zhang, L., Falla, T.J. (2010). Potential Therapeutic Application of Host Defense Peptides. In: Giuliani, A., Rinaldi, A. (eds) Antimicrobial Peptides. Methods in Molecular Biology, vol 618. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-594-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-594-1_19

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-593-4

  • Online ISBN: 978-1-60761-594-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics