Skip to main content

Isolation and Culture of Hair Follicle Pluripotent Stem (hfPS) Cells and Their Use for Nerve and Spinal Cord Regeneration

  • Protocol
  • First Online:
Epidermal Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 585))

Abstract

The hair follicle is dynamic, cycling between growth (anagen), regression (catagen), and resting (telogen) phases throughout life. We have demonstrated that nestin-expressing hair follicle stem cells give rise to follicle structures during early anagen or growth phase of the hair follicle. Nestin-expressing hair follicle stem cells appear in the hair follicular stem cell area, the permanent upper hair follicle immediately below the sebaceous glands and above the bulge area. The nestin-expressing hair follicle stem cells can differentiate into neurons, glia, keratinocytes, smooth muscle cells, and melanocytes in vitro. Furthermore, the hair follicle stem cells promote the recovery of peripheral nerve and spinal cord injury. We have termed these cells hair follicle pluripotent stem (hfPS) cells. These results suggest that hfPS cells provide an important accessible, autologous source of adult stem cells with potential for use in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li, L., Mignone, J., Yang, M., Matic, M., Penman, S., Enikolopov, G., and Hoffman, R.M. (2003) Nestin expression in hair follicle sheath progenitor cells. Proc. Natl. Acad. Sci. USA 100, 9958–9961.

    Article  PubMed  CAS  Google Scholar 

  2. Amoh, Y., Li, L., Katsuoka, K., Penman, S., and Hoffman, R.M. (2005) Multipotent nestin-positive, keratin-negative hair follicle bulge stem cells can form neurons. Proc Natl Acad Sci USA 102, 5530–5534.

    Article  PubMed  CAS  Google Scholar 

  3. Amoh, Y., Li, L., Yang, M., Moossa, A.R., Katsuoka, K., Penman, S., and Hoffman, R.M. (2004) Nascent blood vessels in the skin arise from nestin-expressing hair follicle cells. Proc Natl Acad Sci USA 101, 13291–13295.

    Article  PubMed  CAS  Google Scholar 

  4. Amoh, Y., Li, L., Campillo, R., Kawahara, K., Katsuoka, K., Penman, S., and Hoffman, R.M. (2005) Implanted hair follicle stem cells form Schwann cells that support repair of severed peripheral nerves. Proc. Natl. Acad. Sci. USA 102, 17734–17738.

    Article  PubMed  CAS  Google Scholar 

  5. Amoh, Y., Li, L., Katsuoka, K., and Hoffman, R.M. (2008) Multipotent hair follicle stem cells promote repair of spinal cord injury and recovery of walking function. Cell Cycle 7, 1865–1869.

    Article  PubMed  CAS  Google Scholar 

  6. Amoh, Y., Kanoh, M., Niiyama, S., Kawahara, K., Sato, Y., Katsuoka, K., and Hoffman, R.M. (2009) Human and mouse hair follicles contain both multipotent and monopotent stem cells. Cell Cycle, 8, 176–177.

    Google Scholar 

  7. Mignone, J.L., Kukekov, V., Chiang, A.S., Steindler, D., Enikolopov, G. (2004) Neural stem and progenitor cells in nestin-GFP transgenic mice. J. Comp. Neurol. 469, 311–324.

    Article  PubMed  CAS  Google Scholar 

  8. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T., Nishimune, Y. (1997) ‘Green mice’ as a source of ubiquitous green cells. FEBS Lett 407, 313-319.

    Article  PubMed  CAS  Google Scholar 

  9. Yamauchi, K., Yang, M., Jiang, P., Xu., M., Yamamoto, N., Tsuchiya, H., Tomita, K., Moossa, A.R., Bouvet, M., and Hoffman, R.M. (2006) Development of real-time subcellular dynamic multicolor imaging of cancer cell trafficking in live mice with a variable-magnification whole-mouse imaging system. Cancer Res. 66, 4208-4214.

    Article  PubMed  CAS  Google Scholar 

  10. Lendahl, U., Zimmerman, L. B. & McKay, R.D.G. (1990) CNS stem cells express a new class of intermediate filament protein. Cell 60, 585-595.

    Article  PubMed  CAS  Google Scholar 

  11. Basso, D.M., Beattie, M.S., & Bresnahan, J.C. (1996) Graded histological and locomotor outcomes after spinal cord contusion using the NYU weight-drop device versus transection. Exp Neurol 139, 244-256.

    Article  PubMed  CAS  Google Scholar 

  12. Amoh, Y., Kanoh, M., Niiyama, S., Hamada, Y., Kawahara, K., Sato, Y. Hoffman, R.M., and Katsuoka, K. (2009) Human hair follicle pluripotent stem (hfPS) cells promote regeneration of peripheral-nerve injury: An advantageous alternative to ES and iPS cells. J Cell Biochem 107, 1016–1020.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Amoh, Y., Hoffman, R.M. (2010). Isolation and Culture of Hair Follicle Pluripotent Stem (hfPS) Cells and Their Use for Nerve and Spinal Cord Regeneration. In: Turksen, K. (eds) Epidermal Cells. Methods in Molecular Biology, vol 585. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-380-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-380-0_28

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-379-4

  • Online ISBN: 978-1-60761-380-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics