Skip to main content

A Systematic Strategy for the Discovery of Candidate Genes Responsible for Phenotypic Variation

  • Protocol
  • First Online:
Book cover Cardiovascular Genomics

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 573))

Abstract

It is increasingly common to combine genome-wide expression data with quantitative trait mapping data to aid in the search for sequence polymorphisms responsible for phenotypic variation. By joining these complex but different data types at the level of the biological pathway, we can take advantage of existing biological knowledge to systematically identify possible mechanisms of genotype–phenotype interaction. With the development of web services and workflows, this process can be made rapid and systematic. Our methodology was applied to a use case of resistance to African trypanosomiasis in mice. Workflows developed in this investigation, including a guide to loading and executing them with example data, are available at http://www.myexperiment.org/users/43/workflows.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.biomart.org/

  2. 2.

    http://www.iscb.org/ism2004/posters/duncan.hullATcs.man.ac.uk_445.html

References

  1. Hedeler, C, Paton, N, Behnke, J, et al. (2006) A classification of tasks for the systematic study of immune response using functional genomics data. Parasitology 132(Pt 2): 157–167.

    PubMed  CAS  Google Scholar 

  2. Mitchell, J, McCray, A, Bodenreider, O. (2003) From phenotype to genotype: issues in navigating the available information resources. Methods Inf Med 42(5): 557–563.

    PubMed  CAS  Google Scholar 

  3. Liolios, K, Tavernarakis, N, Hugenholtz, P, et al. (2006) The Genomes on Line Database (GOLD) v.2: a monitor of genome projects worldwide. Nucleic Acids Res 34: D332–D334.

    Article  PubMed  CAS  Google Scholar 

  4. Fisher, P, Hedeler, C, Wolstencroft, K, et al. (2007) A systematic strategy for large-scale analysis of genotype phenotype correlations: identification of candidate genes involved in African trypanosomiasis. Nucleic Acids Res 35(16): 5625–5633.

    Article  PubMed  CAS  Google Scholar 

  5. Köhler, J, Baumbach, J, Taubert, J, et al. (2006) Graph-based analysis and visualization of experimental results with ONDEX. Bioinformatics 22(11): 1383–1390.

    Article  PubMed  Google Scholar 

  6. Macdonald, M, Ambrose, C, Duyao, M, et al. (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington's disease chromosomes. The Huntington's Disease Collaborative Research Group. Cell 72(6): 971–983.

    Article  Google Scholar 

  7. Glazier, A, Nadeau, J, Aitman, T, (2002) Finding genes that underlie complex traits. Science 298(5602): 2345–2349.

    Article  PubMed  CAS  Google Scholar 

  8. Brown, A, Olver, W, Donnelly, C, et al. (2005) Searching QTL by gene expression: analysis of diabesity. BMC Genet 6(1): 12–20.

    Article  PubMed  Google Scholar 

  9. Doerge, R. (2002) Mapping and analysis of quantitative trait loci in experimental populations. Nat Rev Genet 3(1): 43–52.

    Article  PubMed  CAS  Google Scholar 

  10. Schadt, E. (2006) Novel integrative genomics strategies to identify genes for complex traits. Anim Genet 37(1): 18–23.

    Article  PubMed  CAS  Google Scholar 

  11. Stevens, R, Tipney, H, Wroe, C, et al. (2004) Exploring Williams-Beuren syndrome using myGrid. Bioinformatics 20(1): 303–310.

    Article  Google Scholar 

  12. Hitzemann, R, Malmanger, B, Reed, C, et al. (2003) A strategy for the integration of QTL, gene expression, and sequence analyses. Mamm Genome 14(11): 733–747.

    Article  PubMed  CAS  Google Scholar 

  13. Flint, J, Valdar, W, Shifman, S, et al. (2005) Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet 6(4): 271–286.

    Article  PubMed  CAS  Google Scholar 

  14. Dharmadi, Y, Gonzalez, R. (2004) DNA microarrays: experimental issues, data analysis, and application to bacterial systems. Biotechnol Prog 20(5): 1309–1324.

    Article  PubMed  CAS  Google Scholar 

  15. Kell, D. (2002) Genotype-phenotype mapping: genes as computer programs. Trends Genet 18(11): 555–559.

    Article  PubMed  CAS  Google Scholar 

  16. Kell, D, Oliver, S. (2004) Here is the evidence, now what is the hypothesis? The complementary roles of inductive and hypothesis-driven science in the post-genomic era. Bioessays 26(1): 99–105.

    Article  PubMed  Google Scholar 

  17. Illuminating the black box. Nature 2006, 442(7098): 1.

    Google Scholar 

  18. Stein, L. (2003) Integrating biological databases. Nat Rev Genet 4(5): 337–345.

    Article  PubMed  CAS  Google Scholar 

  19. Stein, L. (2002) Creating a bioinformatics nation. Nature 417(6885): 119–120.

    Article  PubMed  CAS  Google Scholar 

  20. Oinn, T, Addis, M, Ferris, J, et al. Taverna: a tool for the composition and enactment of bioinformatics workflows. Bioinformatics 20(17): 3045–3054.

    Google Scholar 

  21. Tomfohr J, Lu J, Kepler T. (2005) Pathway level analysis of gene expression using singular value decomposition. BMC Bioinformatics 6: 225.

    Article  PubMed  Google Scholar 

  22. Oinn, T (2003) Talisman-rapid application development for the grid. Bioinformatics 19(1): i212–i214.

    Article  PubMed  Google Scholar 

  23. Birney, E, Andrews, D, Caccamo, M, et al. (2006) Ensembl 2006. Nucleic Acids Res 34: D556–D561.

    Article  PubMed  Google Scholar 

  24. Kanehisa, M, Goto, S. (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1): 27–30.

    Article  PubMed  CAS  Google Scholar 

  25. Maglott, D, Ostell, J, Pruitt, K, et al. (2007) Entrez Gene: gene-centered information at NCBI. Nucleic Acids Res 35: D26–D31.

    Article  PubMed  Google Scholar 

  26. Bairoch, A, Apweiler, R, Wu, C, et al. (2005) The Universal Protein Resource (UniProt). Nucleic Acids Res 33: D115–D119.

    Google Scholar 

  27. Hill, E, O'Gorman, G, Agaba, M, et al. (2005) Understanding bovine trypanosomiasis and trypano tolerance: the promise of functional genomics. Vet Immunol Immunopathol 105(3–4): 247–258.

    Article  PubMed  CAS  Google Scholar 

  28. Hanotte, O, Ronin, Y, Agaba, M, et al. (2003) Mapping of quantitative trait loci controlling trypanotolerance in a cross of tolerant West African N'Dama and susceptible East African Boran cattle. Proc Natl Acad Sci USA 100(13): 7443–7448.

    Article  PubMed  CAS  Google Scholar 

  29. Iraqi, F, Clapcott, S, Kumari, P, et al. (2000) Fine mapping of trypanosomiasis resistance loci in murine advanced intercross lines. Mamm Genome 11(8): 645–648.

    Article  PubMed  CAS  Google Scholar 

  30. Koudandé, O, van Arendonk, J, Iraqi, F. (2005) Marker-assisted introgression of trypanotolerance QTL in mice. Mamm Genome 16(2): 112–119.

    Article  PubMed  Google Scholar 

  31. Kemp, S, Iraqi, F, Darvasi, A, et al. (1997) Localization of genes controlling resistance to trypanosomiasis in mice. Nature Genetics 16(2): 194–196.

    Article  PubMed  CAS  Google Scholar 

  32. Li, C, Wong, W. (2001) Model-based analysis of oligonucleotide arrays: model validation, design issues and standard error application. Genome Biol 2(8): research0032.0031-research0032.0011.

    Google Scholar 

  33. Irizarry, R, Hobbs, B, Collin, F, et al. (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4(2): 249–264.

    Article  PubMed  Google Scholar 

  34. myExperiment: http://myexperiment.org/.

Download references

Acknowledgements

The authors would like to acknowledge the assistance of the myGrid consortium, software developers, and its associated researchers. We would also like to thank the researchers of the Wellcome Trust Host–Pathogen Project (GR066764MA). This work is supported by the UK e-Science EPSRC GR/R67743.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fisher, P., Noyes, H., Kemp, S., Stevens, R., Brass, A. (2009). A Systematic Strategy for the Discovery of Candidate Genes Responsible for Phenotypic Variation. In: DiPetrillo, K. (eds) Cardiovascular Genomics. Methods in Molecular Biology™, vol 573. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-247-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-247-6_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-246-9

  • Online ISBN: 978-1-60761-247-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics