Skip to main content
Book cover

Proteomics pp 261–288Cite as

Shotgun Protein Identification and Quantification by Mass Spectrometry

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 564))

Summary

Shotgun proteomics is based on identification and quantification of peptides from digested proteins using tandem mass spectrometry. In this chapter, we discuss computational methods to analyze tandem mass spectra of peptides, including database searching, de novo peptide sequencing, hybrid approaches, library searching, and unrestricted modification search. A special focus is given to database searching programs since they are most widely used. The process of inferring proteins from identified peptides is then discussed. We also provide description of key steps in the quantitative analysis of mass spectrometry proteomics data.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Herbert, B.R., Sanchez, J.-C., Bini, L. (1997) Two-dimensional electrophoresis: the state of art and future directions. In Proteome Research: New Frontiers in Functional Genomics. pp. 13–33. Springer Berlin, Germany.

    Google Scholar 

  2. Zhu, H. and Snyder, M. (2003) Protein chip technology. Curr Opin Chem Biol 7, 55–63.

    Article  PubMed  CAS  Google Scholar 

  3. Little, D.P., Speir, J.P., Senko, M.W., O’Connor, P.B., McLafferty, F.W. (1994) Infrared multiphoton dissociation of large multiply charged ions for biomolecule sequencing. Anal Chem 66, 2809–2815.

    Article  PubMed  CAS  Google Scholar 

  4. Senko, M.W., Speir, J.P., McLafferty, F.W. (1994) Collisional activation of large multiply charged ions using Fourier transform mass spectrometry. Anal Chem 66, 2801–2808.

    Article  PubMed  CAS  Google Scholar 

  5. Washburn, M.P., Wolters, D., Yates, J.R. 3rd (2001) Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19, 242–247.

    Article  PubMed  CAS  Google Scholar 

  6. Venable, J.D., Dong, M.Q., Wohlschlegel, J., Dillin, A., Yates, J.R. (2004) Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat Method 1, 39–45.

    Article  CAS  Google Scholar 

  7. Eng, J.K., McCormack, A.L., Yates, J.R. 3rd (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5, 976–989.

    Article  CAS  Google Scholar 

  8. Perkins, D.N., Pappin, D.J.C., Creasy, D.M., Cottrell, J.S. (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567.

    Article  PubMed  CAS  Google Scholar 

  9. Frank, A.M., Savitski, M.M., Nielsen, M.L., Zubarev, R.A., Pevzner, P.A. (2007) De novo peptide sequencing and identification with precision mass spectrometry. J Proteome Res 6, 114–123.

    Article  PubMed  CAS  Google Scholar 

  10. Ma, B., Zhang, K., Hendrie, C., Liang, C., Li, M., Doherty-Kirby, A., Lajoie, G. (2003) PEAKS: powerful software for peptide de novo sequencing by MS/MS. Rapid Commun Mass Spectrom 17, 2337–2342.

    Article  PubMed  CAS  Google Scholar 

  11. Tabb, D.L., Saraf, A., Yates, J.R. 3rd (2003) GutenTag: high-throughput sequence tagging via an empirically derived fragmentation model.Anal Chem 75, 6415–6421.

    Article  PubMed  CAS  Google Scholar 

  12. Tanner, S., Shu, H., Frank, A., Wang, L.C., Zandi, E., Mumby, M., Pevzner, P.A., Bafna, V. (2005) InsPecT: identification of posttranslationally modified peptides from tandem mass spectra. Anal Chem 77, 4626–4639.

    Article  PubMed  CAS  Google Scholar 

  13. Yates, J.R. 3rd, Morgan, S.F., Gatlin, C.L., Griffin, P.R., Eng, J.K. (1998) Method to compare collision-induced dissociation spectra of peptides: potential for library searching and subtractive analysis. Anal Chem 70, 3557–3565.

    Article  PubMed  CAS  Google Scholar 

  14. Frewen, B.E., Merrihew, G.E., Wu, C.C., Noble, W.S., MacCoss, M.J. (2006) Analysis of peptide MS/MS spectra from large-scale proteomics experiments using spectrum libraries. Anal Chem 78, 5678–5684.

    Article  PubMed  CAS  Google Scholar 

  15. Tsur, D., Tanner, S., Zandi, E., Bafna, V., Pevzner, P.A. (2005) Identification of post-translational modifications by blind search of mass spectra. Nat Biotechnol 23, 1562–1567.

    Article  PubMed  CAS  Google Scholar 

  16. Havilio, M., Wool, A. (2007) Large-scale unrestricted identification of post-translation modifications using tandem mass spectrometry. Anal Chem 79, 1362–1368.

    Article  PubMed  CAS  Google Scholar 

  17. Sadygov, R.G., Cociorva, D., Yates, J.R. 3rd (2004) Large-scale database searching using tandem mass spectra: looking up the answer in the back of the book. Nat Method 1, 195–202.

    Article  CAS  Google Scholar 

  18. Nesvizhskii, A.I. (2007) Protein identification by tandem mass spectrometry and sequence database searching. Method Mol Biol 367, 87–119.

    CAS  Google Scholar 

  19. Sadygov, R.G., Yates, J.R., 3rd (2003) A hypergeometric probability model for protein identification and validation using tandem mass spectral data and protein sequence databases. Anal Chem 75, (15), 3792–3798.

    Article  PubMed  CAS  Google Scholar 

  20. Geer, L.Y., Markey, S.P., Kowalak, J.A., Wagner, L., Xu, M., Maynard, D.M., Yang, X., Shi, W., and Bryant, S.H. (2004) Open mass spectrometry search algorithm. J Proteome Res 3, 958–964.

    Article  PubMed  CAS  Google Scholar 

  21. Craig, R., Beavis, R.C. (2004) TANDEM: matching proteins with tandem mass spectra. Bioinformatics 20, 1466–1467.

    Article  PubMed  CAS  Google Scholar 

  22. Xu, T., Venable, J.D., Kyu Park, S., Cociorva, D., Lu, B., Liao, L., Wohlschlegel, J., Hewel, J., Yates, J.R. 3rd (2006) ProLuCID, a fast and sensitive tandem mass spectra-based protein identification program. Mol Cell Proteomics 5(10) Supplement, 174.

    Google Scholar 

  23. Field, H.I., Fenyo, D., Beavis, R.C. (2002) RADARS, a bioinformatics solution that automates proteome mass spectral analysis, optimises protein identification, and archives data in a relational database. Proteomics 2, 36–47.

    Article  PubMed  CAS  Google Scholar 

  24. Grubbs, F.E., Procedures for detecting outlying observations in samples. Technometrics 1969, 11(1), 1–21.

    Article  Google Scholar 

  25. Zubarev, R.A., Horn, D.M., Fridriksson, E.K., Kelleher, N.L., Kruger, N.A., Lewis, M.A., Carpenter, B.K., McLafferty, F.W. (2000) Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem 72, 563–573.

    Article  PubMed  CAS  Google Scholar 

  26. Syka, J.E., Coon, J.J., Schroeder, M.J., Shabanowitz, J., Hunt, D.F. (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci U S A 101, 9528–9533.

    Article  PubMed  CAS  Google Scholar 

  27. Tabb, D.L., McDonald, W.H., Yates, J.R. 3rd (2002) DTASelect and contrast: tools for assembling and comparing protein identifications from shotgun proteomics. J Proteome Res 1, 21–26.

    Article  PubMed  CAS  Google Scholar 

  28. Keller, A., Nesvizhskii, A.I., Kolker, E., Aebersold, R. (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74(20), 5383–5392.

    Article  PubMed  CAS  Google Scholar 

  29. Cociorva, D., Tabb, D., Yates, J.R. 3rd (2006) Validation of tandem mass spectrometry database search results using DTASelect. Curr Protoc Bioinformatics supplement 16, 13.4.1–13.4.14.

    Google Scholar 

  30. Savitski, M.M., Nielsen, M.L., Kjeldsen, F., Zubarev, R.A. (2005) Proteomics-grade de novo sequencing approach. J Proteome Res 4, 2348–2354.

    Article  PubMed  CAS  Google Scholar 

  31. Horn, D.M., Zubarev, R.A., McLafferty, F.W. (2000) Automated reduction and interpretation of high resolution electrospray mass spectra of large molecules. J Am Soc Mass Spectrom 11, 320–332.

    Article  PubMed  CAS  Google Scholar 

  32. Lu, B., Chen, T. (2004) Algorithms for de novo peptide sequencing via tandem mass spectrometry. Drug Discov Today: BioSilico 2, 85–90.

    Article  CAS  Google Scholar 

  33. Mann, M., Wilm, M. (1994) Error-tolerant identification of peptides in sequence databases by peptide sequence tags. Anal Chem 66, 4390–4399.

    Article  PubMed  CAS  Google Scholar 

  34. Han, Y., Ma, B., Zhang, K. (2005) SPIDER: software for protein identification from sequence tags containing de novo sequencing error. J Bioinformatics Comput Biol 3, 697–716.

    Article  CAS  Google Scholar 

  35. Searle, B.C., Dasari, S., Wilmarth, P.A., Turner, M., Reddy, A.P., David, L.L., Nagalla, S.R.(2005) Identification of protein modifications using MS/MS de novo sequencing and the OpenSea alignment algorithm. J Proteome Res 4, 546–554.

    Article  PubMed  CAS  Google Scholar 

  36. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. (1990) Basic local alignment search tool. J Mol Biol 215, 403–410.

    PubMed  CAS  Google Scholar 

  37. Pearson, W.R., Lipman, D.J. (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85, 2444–2448.

    Article  PubMed  CAS  Google Scholar 

  38. Taylor, J.A., Johnson, R.S. (1997) Sequence database searches via de novo peptide sequencing by tandem mass spectrometry. Rapid Commun Mass Spectrom 11, 1067–1075.

    Article  PubMed  CAS  Google Scholar 

  39. Mackey, A.J., Haystead, T.A., Pearson, W.R. (2002) Getting more from less: algorithms for rapid protein identification with multiple short peptide sequences. Mol Cell Proteomics 1, 139–147.

    Article  PubMed  CAS  Google Scholar 

  40. Shevchenko, A., Sunyaev, S., Loboda, A., Shevchenko, A., Bork, P., Ens, W., Standing, K.G. (2001) Charting the proteomes of organisms with unsequenced genomes by MALDI-quadrupole time-of-flight mass spectrometry and BLAST homology searching. Anal Chem 73, 1917–1926.

    Article  PubMed  CAS  Google Scholar 

  41. Heller, S. (1999) The history of the NIST/EPA/NIH mass spectral database. Today’s Chemist Work 8, 45–50.

    Google Scholar 

  42. Craig, R., Cortens, J.C., Fenyo, D., Beavis, R.C. (2006) Using annotated peptide mass spectrum libraries for protein identification. J Proteome Res 5, 1843–1849.

    Article  PubMed  CAS  Google Scholar 

  43. Lam, H., Deutsch, E.W., Eddes, J.S., Eng, J.K., King, N., Stein, S.E., Aebersold, R. (2007) Development and validation of a spectral library searching method for peptide identification from MS/MS. Proteomics 7, 655–667.

    Article  PubMed  CAS  Google Scholar 

  44. Liu, J., Bell, A.W., Bergeron, J.J., Yanofsky, C.M., Carrillo, B., Beaudrie, C.E., Kearney, R.E. (2007) Methods for peptide identification by spectral comparison. Proteome Sci 5, 3.

    Article  PubMed  Google Scholar 

  45. Zhang, Z. (2004) Prediction of low-energy collision-induced dissociation spectra of peptides. Anal Chem 76, 3908–3922.

    Article  PubMed  CAS  Google Scholar 

  46. DeGnore, J.P., Qin, J. (1998) Fragmentation of phosphopeptides in an ion trap mass spectrometer. J Am Soc Mass Spectrom 9, 1175–1188.

    Article  PubMed  CAS  Google Scholar 

  47. Yates, J.R. 3rd, Eng, J.K., McCormack, A.L., Schieltz, D. (1995) Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Anal Chem 67, 1426–1436.

    Article  PubMed  CAS  Google Scholar 

  48. Nesvizhskii, A.I., Keller, A., Kolker, E., Aebersold, R. (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75, 4646–4658.

    Article  PubMed  CAS  Google Scholar 

  49. Julka, S., Regnier, F. (2004) Quantification in proteomics through stable isotope coding: a review. J Proteome Res 3, 350–363.

    Article  PubMed  CAS  Google Scholar 

  50. Ong, S.E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey, A., Mann, M. (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1, 376–386.

    Article  CAS  Google Scholar 

  51. Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H., Aebersold, R. (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17, 994–999.

    Article  PubMed  CAS  Google Scholar 

  52. Ross, P.L., Huang, Y.N., Marchese, J.N., Williamson, B., Parker, K. et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3, 1154–1169.

    Article  PubMed  CAS  Google Scholar 

  53. Mirgorodskaya, O.A., Kozmin, Y.P., Titov, M.I., Korner, R., Sonksen, C.P., Roepstorff, P. (2000) Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using (18)O-labeled internal standards. Rapid Commun Mass Spectrom 14, 1226–1232.

    Article  PubMed  CAS  Google Scholar 

  54. Liu, H., Sadygov, R.G., Yates, J.R. (2004) A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal Chem 76, 4193–4201.

    Article  PubMed  CAS  Google Scholar 

  55. Blondeau, F., Ritter, B., Allaire, P.D., Wasiak, S., Girard, M., Hussain, N.K., Angers, A., Legendre-Guillemin, V., Roy, L., Boismenu, D., Kearney, R.E., Bell, A.W., Bergeron, J.J., McPherson, P.S. (2004) Tandem MS analysis of brain clathrin-coated vesicles reveals their critical involvement in synaptic vesicle recycling. Proc Natl Acad Sci U S A 101, 3833–3838.

    Article  PubMed  CAS  Google Scholar 

  56. Bondarenko, P.V., Chelius, D., Shaler, T.A. (2002) Identification and relative quantitation of protein mixtures by enzymatic digestion followed by capillary reversed-phase liquid chromatography–tandem mass spectrometry. Anal Chem 74, 4741–4749.

    Article  PubMed  CAS  Google Scholar 

  57. Chelius, D., Bondarenko, P.V. (2002) Quantitative profiling of proteins in complex mixtures using liquid chromatography and mass spectrometry. J Proteome Res 1, 317–323.

    Article  PubMed  CAS  Google Scholar 

  58. Chelius, D., Zhang, T., Wang, G., Shen, R.F. (2003) Global protein identification and quantification technology using two-dimensional liquid chromatography nanospray mass spectrometry. Anal Chem 75, 6658–6665.

    Article  PubMed  CAS  Google Scholar 

  59. Higgs, R.E., Knierman, M.D., Gelfanova, V., Butler, J.P., Hale, J.E. (2005) Comprehensive label-free method for the relative quantification of proteins from biological samples. J Proteome Res 4, 1442–1450.

    Article  PubMed  CAS  Google Scholar 

  60. Wang, W., Zhou, H., Lin, H., Roy, S., Shaler, T.A., Hill, L.R., Norton, S., Kumar, P., Anderle, M., Becker, C.H. (2003) Quantification of proteins and metabolites by mass spectrometry without isotopic labeling or spiked standards. Anal Chem 75, 4818–4826.

    Article  PubMed  CAS  Google Scholar 

  61. Li, X.J., Yi, E.C., Kemp, C.J., Zhang, H., Aebersold, R. (2005) A software suite for the generation and comparison of peptide arrays from sets of data collected by liquid chromatography-mass spectrometry. Mol Cell Proteomics 4, 1328–1340.

    Article  PubMed  CAS  Google Scholar 

  62. Wiener, M.C., Sachs, J.R., Deyanova, E.G., Yates, N.A. (2004) Differential mass spectrometry: a label-free LC-MS method for finding significant differences in complex peptide and protein mixtures. Anal Chem 76, 6085–6096.

    Article  PubMed  CAS  Google Scholar 

  63. Pan, C., Kora, G., McDonald, W.H., Tabb, D.L., VerBerkmoes, N.C., Hurst, G.B., Pelletier, D.A., Samatova, N.F., Hettich, R.L. (2006) ProRata: a quantitative proteomics program for accurate protein abundance ratio estimation with confidence interval evaluation. Anal Chem 15, 7121–7131.

    Article  Google Scholar 

  64. Park, S.K., Venable, J.D., Xu, T., Yates, J.R. 3rd (2008) A quantitative analysis software tool for mass spectrometry-based proteomics. Nat Methods 5(4), 319–22.

    PubMed  CAS  Google Scholar 

  65. Schulze, W.X., Mann, M. (2004) A novel proteomic screen for peptide-protein interactions. J Biol Chem 279, 10756–10764.

    Article  PubMed  CAS  Google Scholar 

  66. Han, D.K., Eng, J., Zhou, H., Aebersold, R. (2001) Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat Biotechnol 19, 946–951.

    Article  PubMed  CAS  Google Scholar 

  67. Li, X.J., Zhang, H., Ranish, J.A., Aebersold, R. (2003) Automated statistical analysis of protein abundance ratios from data generated by stable-isotope dilution and tandem mass spectrometry. Anal Chem 75, 6648–6657.

    Article  PubMed  CAS  Google Scholar 

  68. MacCoss, M.J., Wu, C.C., III, Yates, J.R. (2003) A correlation algorithm for the automated analysis of quantitative “shotgun” proteomics data. Anal Chem 75, 6912–6921.

    Article  PubMed  CAS  Google Scholar 

  69. Pang, J.X., Ginanni, N., Dongre, A.R., Hefta, S.A., Opiteck, G.J.J. (2002) Biomarker discovery in urine by proteomics. J Proteome Res 1, 161–169.

    Article  PubMed  CAS  Google Scholar 

  70. Gao, J., Opiteck, G.J., Friedrichs, M.S., Dongre, A.R., Hefta, S.A.J. (2003) Changes in the protein expression of yeast as a function of carbon source. J Proteome Res 2, 643–649.

    Article  PubMed  CAS  Google Scholar 

  71. Zybailov, B.L., Florens, L., Washburn, M.P. (2007) Quantitative shotgun proteomics using a protease with broad specificity and normalized spectral abundance factors. Mol Biosyst 3, 354–360.

    Article  PubMed  CAS  Google Scholar 

  72. Clauser, K.R., Baker, P., Burlingame, A.L. (1999) Role of accurate mass measurement (+/− 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Anal Chem 71, 2871–82.

    Article  PubMed  CAS  Google Scholar 

  73. Mo, L., Dutta, D., Wan, Y., Chen, T. (2007) MSNovo: a dynamic programming algorithm for de novo peptide sequencing via tandem mass spectrometry. Anal Chem 79, 4870–4878.

    Article  PubMed  CAS  Google Scholar 

  74. Fischer, B., Roth, V., Roos, F., Grossmann, J., Baginsky, S., Widmayer, P., Gruissem, W., Buhmann, J.M. (2005) NovoHMM: a hidden Markov model for de novo peptide sequencing. Anal Chem 77, 7265–7273.

    Article  PubMed  CAS  Google Scholar 

  75. Frank, A., Pevzner, P. (2005) PepNovo: de novo peptide sequencing via probabilistic network modeling. Anal Chem 77, 964–973.

    Article  PubMed  CAS  Google Scholar 

  76. Bern, M., Goldberg, D. (2006) De novo analysis of peptide tandem mass spectra by spectral graph partitioning. J Comput Biol 13, 364–378.

    Article  PubMed  CAS  Google Scholar 

  77. DiMaggio, P.A. Jr, Floudas, C.A. (2007) De novo peptide identification via tandem mass spectrometry and integer linear optimization. Anal Chem 79, 1433–1446.

    Article  PubMed  CAS  Google Scholar 

  78. Bern, M., Cai, Y., Goldberg, D. (2007) Lookup peaks: a hybrid of de novo sequencing and database search for protein identification by tandem mass spectrometry. Anal Chem 79, 1393–1400.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Yates III .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Lu, B., Xu, T., Park, S.K., Yates, J.R. (2009). Shotgun Protein Identification and Quantification by Mass Spectrometry. In: Reinders, J., Sickmann, A. (eds) Proteomics. Methods in Molecular Biology™, vol 564. Humana Press. https://doi.org/10.1007/978-1-60761-157-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-157-8_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-156-1

  • Online ISBN: 978-1-60761-157-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics