Skip to main content

Phase Sensitive Interferometry for Biosensing Applications

  • Protocol

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 503))

Summary

A simple yet highly sensitive implementation of an interferometric technique for a label-free molecular biosensing application is described. The intereferometric detection method is based on the phase-sensitive detection of spectral interference fringes. The change in optical path length due to binding of biomolecules on functionalized optically clear substrates can be quantified by detecting the change in the phase of the spectral fringes. The common path interferometeric design permits measurement of sub- monolayer binding of biomolecules to the sensor surfaces.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. G. H. Cross, A. A. Reeves, S. Brand, J. F. Popplewell, L. L. Peel, M. J. Swann, N. J. Freeman, “A new quantitative optical biosensor for protein characterization,” Biosensors and Bioelectronics 19, 383 (2003)

    Article  CAS  PubMed  Google Scholar 

  2. V. S. -Y. Lin, K. Motesharei, K. -P. S. Dancil, M. J. Sailor, M. R. Ghadiri, “A porous silicon-based optical interferometric biosensor,” Science 278, 840 (1997)

    Article  CAS  PubMed  Google Scholar 

  3. D. J. Bornhop, J. C. Latham, A. Kussrow, D. A. Markov, R. D. Jones, H. S. Sørensen, “Molecular interactions studied back-scattering interferometry,” Science 317, 1732 (2007)

    Article  CAS  PubMed  Google Scholar 

  4. L. Peng, M. M. Varma, W. Cho, F. E. Regnier, D. D. Nolte, “Adaptive interferometry of protein on a BioCD,” Applied Optics. 46, 5384 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. M. M. Varma, H. D. Inerowicz, F. E. Reg-nier, D. D. Nolte, “High-speed label-free detection by spinning-disk micro-interfer-ometry,” Biosensors and Bioelectronics 19, 1371–1376 (2004)

    Article  CAS  PubMed  Google Scholar 

  6. M. M. Varma, D. D. Nolte, H. D. Inerowicz, F. E. Regnier, “Spinning-disk self-referencing interferometry of antigen–antibody recogni tion,” Optics Letters 29, 950–952 (2004)

    Article  CAS  PubMed  Google Scholar 

  7. K. Haupt, A. -S. Belmont, S. Jaeger, D. Knopp, R. Niessner, G. Gauglitz, “Molecularly imprinted polymer films for reflectometric interference spectroscopic sensors,” Biosensors and Bioelec-tronics 22(12), 3267–3272 (2007)

    Article  Google Scholar 

  8. K. AddedKroger, J. Bauer, B. Fleckenstein, J. Rademann, G. Jung, G. Gauglitz, “Epitope-mapping of transglutaminase with parallel label-free optical detection,” Biosensors and Bioelectronics 17(11–12), 937–944 (2002)

    Article  Google Scholar 

  9. A. Brecht, G. Gauglitz, G. Kraus, G. Lang, J. Piehler, J. Seemann, “Application of reflec-tometric interference spectroscopy to chemical and biochemical sensing,” In Sensor 95, 355–360 (1995)

    Google Scholar 

  10. K. Schmitt, B. Schirmer, A. Brandenburg, “Development of a highly sensitive interfero-metric biosensor,” Proceedings of SPIE 5461, 22 (2004)

    Article  Google Scholar 

  11. O. Birkert, G. Gauglitz, “Development of an assay for label-free high-throughput screening of thrombin inhibitors by use of reflecto-metric interference spectroscopy,” Analytical Bioanalytical Chemistry 372, 141 (2002)

    Article  CAS  Google Scholar 

  12. J. Hast, H. Heikkinen, L. Krehut, R. Myllyla, “Direct optical Biosensor based on optical feedback interferometry,” IEEE, 177 (2005)

    Google Scholar 

  13. W. B. Nowall, N. Dontha, W. G. Kuhr, “Electron transfer kinetics at a biotin/avidin patterned glassy carbon electrode,” Biosensors and Bioelectronics 13, 1237 (1998)

    Article  CAS  PubMed  Google Scholar 

  14. C. J. Easley, L. A. Legendre, M. G. Roper, T. A. Wavering, J. P. Ferrance and J. P. Landers, “Extrinsic fabry-perot interferometry for noncontact temperature control of nanoliter-volume enzymatic reactions in glass micro chips,” Analytical Chemistry 77, 1038 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. B. H. Schneider, J. G. Edwards, N. F. Hartman, “Hartman interferometer: versatile integrated optic sensor for label-free, real-time quantifica tion of nucleic acids, proteins, and pathogens,” Clinical Chemistry 43, 1757 (1997)

    CAS  PubMed  Google Scholar 

  16. K. Schmitt, B. Schirmer, C. Hoffmann, A. Brandenburg, P. Meyrueis, “Interferometric biosensor based on planar optical waveguide sensor chips for label-free detection of surface bound bioreactions,” Biosensors and Bioelec-tronics 22, 2591 (2007)

    Article  CAS  Google Scholar 

  17. N. Kinrot, M. Nathan, “Investigation of a periodically segmented waveguide Fabry–Pérot interferometer for use as a chemical/ biosensor,” Journal of Lightwave Technology 24, 2139 (2006)

    Article  Google Scholar 

  18. D. A. Markov, K. Swinney, D. J. Bornhop, “Label-free molecular interaction determina tions with nanoscale interferometr1y,” J. Am. Chem. Soc. 126, 16659 (2004)

    Article  CAS  PubMed  Google Scholar 

  19. J. Lu, C. M. Strohsahl, B. L. Miller, L. J. Rothberg, “Reflective interferometric detection of label-free oligonucleotides,” Analytical Chemistry 76, 4416 (2004)

    Article  CAS  PubMed  Google Scholar 

  20. R. Leitgeb, C. K. Hitzenberger, A. F. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Optics Express 11, 889 (2003)

    Article  CAS  PubMed  Google Scholar 

  21. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. Bouma, “Improved signal-to-noise ratio in spectral-domain com pared with time-domain optical coherence tomography,” Optics Letters 28, 2067 (2003)

    Article  PubMed  Google Scholar 

  22. M. Choma, M. Sarunic, C. Yang, J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomogra phy,” Optics Express 11, 2183 (2003)

    Article  PubMed  Google Scholar 

  23. M. A. Choma, A. K. Ellerbee, C. Yang, T. L. Creazzo, J. A. Izatt, “Spectral-domain phase microscopy,” Optics Letters 30, 1162 (2005)

    Article  PubMed  Google Scholar 

  24. C. Joo, T. Akkin, B. Cense, B. H. Park, J. F. de Boer, “Spectral-domain optical coher ence phase microscopy for quantitative phase-contrast imaging,” Optics Letters 30, 2131 (2005)

    Article  PubMed  Google Scholar 

  25. N. Nassif, B. Cense, B. H. Park, M. Pierce, S. Yun, B. Bouma, G. Tearney, T. Chen, J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomog raphy of the human retina and optic nerve,” Optics Express 12, 367 (2004)

    Article  CAS  PubMed  Google Scholar 

  26. B. H. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, J. F. de Boer, “Real-time fiber-based multi-functional spec tral-domain optical coherence tomography at 1.3 μm,” Optics Express 13, 3931 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Davé, D.P. (2009). Phase Sensitive Interferometry for Biosensing Applications. In: Rasooly, A., Herold, K.E. (eds) Biosensors and Biodetection. Methods in Molecular Biology™, vol 503. Humana Press. https://doi.org/10.1007/978-1-60327-567-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-567-5_9

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-566-8

  • Online ISBN: 978-1-60327-567-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics