Skip to main content

Bacterial Delivery of siRNAs: A New Approach to Solid Tumor Therapy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 487))

Abstract

RNAi is a powerful research tool for specific gene silencing and may also lead to promising novel therapeutic strategies. However, the development of RNAi-based therapies has been slow due to the lack of targeted delivery methods. The biggest challenge in the use of siRNA-based therapies is delivery to target cells. There are many additional obstacles to in vivo delivery of siRNAs, such as degradation by endogenous enzymes and interaction with blood components leading to nonspecific uptake into cells, which govern biodistribution and availability of siRNA in the body. Naked unmodified synthetic siRNA including plasmid-carried-shRNA-expression constructs cannot penetrate cellular membranes, and therefore, systemic application is unlikely to be successful. The success of gene therapy by siRNAs relies on the development of safe, economical, and efficacious in vivo delivery systems into the target cells. Attenuated Salmonella have been employed recently as vectors to deliver silencing hairpin RNA (shRNA) expression plasmids into mammalian cells. This approach has achieved gene silencing in vitro and in vivo. The facultative anaerobic, invasive Salmonella have a natural tropism for solid tumors including metastatic tumors. Genetically modified, attenuated Salmonella have been used recently both as potential antitumor agents by themselves, and to deliver specific tumoricidal therapies. This chapter describes the use of attenuated bacteria as tumor-targeting delivery systems for cancer therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Hannon, G.J. (2002). RNA interference. Nature 418, 244–251.

    Article  CAS  Google Scholar 

  2. Antoszczyk, S., Taira, K., and Kato, Y. (2006). Correlation of structure and activity of short hairpin RNA. Nucleic Acids Symp Ser (Oxf) 50, 295–296.

    Article  Google Scholar 

  3. Hiroaki, K.H. and Taira, K. (2003). Short hairpin type of dsRNAs that are controlled by tRNAVal. promoter significantly induce RNAi-mediated gene silencing in the cytoplasm of human cells Nucleic Acids Res. 31, 700–707.

    Article  Google Scholar 

  4. Zhang, L., Gao, L., Guo, B., et al. (2007). Intratumoral delivery and suppression of prostate tumor growth by attenuated Salmonella enterica. serovar Typhimurium carrying plasmid- based siRNAs Cancer Res. 67, 5859–5864.

    Article  CAS  Google Scholar 

  5. Bermudes, D., Zheng, L.M., and King, L.C. (2002). Live bacteria as anticancer agents and tumor-selective protein deliver vectors. Curr. Opin. Drug. Discov. Devel. 5, 194–199.

    CAS  Google Scholar 

  6. Tjuvajev, J, Blasberg, R, Luo, X, et al. (2001). Salmonella-based tumor-targeted cancer therapy: tumor amplified protein expression therapy (TAPET) for diagnostic imaging J. Control Release 74, 313–315.

    Article  CAS  Google Scholar 

  7. Zheng, L., Luo, X., Feng, M., et al. (2000). Tumor amplified protein expression therapy: Salmonella as a tumor-selective protein delivery vector. Oncol. Res. 12, 127–135.

    CAS  Google Scholar 

  8. Forbes, N.S., Munn, L.L., Fukumura, D., et al. (2003). Sparse initial entrapment of systemically injected Salmonella typhimurium. leads to heterogeneous accumulation within tumors Cancer Res. 63, 5188–5193.

    CAS  Google Scholar 

  9. Pawelek, J.M., Low, K.B., and Bermudes, D. (2003). Bacteria as tumour-targeting vectors. Lancet Oncol. 4, 548–556.

    Article  Google Scholar 

  10. Grosshans, H. and Slack, F.J. (2002). Micro-RNAs: small is plentiful. J. Cell Biol. 156, 17–21.

    Article  CAS  Google Scholar 

  11. Amarzguioui, M. and Prydz, H. (2004). An algorithm for selection of functional siRNA sequences. Biochem. Biophys. Res. Commun. 316, 1050–1058.

    Article  CAS  Google Scholar 

  12. Paul, C.P., Good, P.D., Winer, I., et al. (2002). Effective expression of small interfering RNA in human cells. Nat. Biotechnol. 20, 505–508.

    Article  CAS  Google Scholar 

  13. Brummelkamp, T.R., Bernards, R., and Agami, R. (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science 296, 550–553.

    Article  CAS  Google Scholar 

  14. Brummelkamp, T.R., Bernards, R., and Agami, R (2002). Stable suppression of tumorigenicity by virus-mediated RNA interference. Cancer Cell 2, 243–247.

    Article  CAS  Google Scholar 

  15. Lambin, P., Theys, J., Landuyt, W., et al. (1998). Colonization of Clostridium in the body is restricted to hypoxic and necrotic areas of tumours. Anaerobe 4, 183–188.

    Article  CAS  Google Scholar 

  16. Luo, X., Li, Z., Lin, S., et al. (2000). Antitumor effect of VNP20009, an attenuated Salmonella in murine tumor models. Ocol. Res. 12, 501–508.

    Google Scholar 

  17. Jazowiecka-Rakus, J and Szala, S (2004). Antitumour activity of Salmonella typhimurium. VNP20047 in B16(F10) murine melanoma model Acta Biochim. Pol. 51, 851–856.

    CAS  Google Scholar 

  18. Khan, S.A., Everest, P., and Servos, S (1998). A lethal role for lipid A in Salmonella infections. Mol. Microbiol. 29, 571–579.

    Article  CAS  Google Scholar 

  19. Low, K.B., Ittensohn, M., Le, T., et al. (1999). Lipid A mutant salmonella with suppressed virulence and TNF-α induction retain tumor-targeting in vivo. Nat. Biotech. 17, 3–41.

    Article  Google Scholar 

  20. Miller, S.I., Kukral, A.M., and Mekalanos, J.J. (1989). A two-component regulatory system (phoP phoQ) controls Salmonella-typhimurium virulence. Proc. Natl. Acad. Sci. USA 86, 5054–5058.

    Article  CAS  Google Scholar 

  21. Ronson, C.W., Nixon, B.T., and Ausubel, F.M. (1987). Conserved domains in Bacterial regulatory proteins that respond to environmental stimuli. Cell 49, 579–581.

    Article  CAS  Google Scholar 

  22. Ernst, R.K., Guina, T., and Miller, S.I. (1999). How intracellular bacteria, survive: surface modifications that promote resistance to host innate immune responses. J. Infect. Dis. 179, S326–S330.

    Article  CAS  Google Scholar 

  23. VanCott, J.L., Chatfield, S.N., Roberts, M., et al. (1998). Regulation of host immune responses by modification of Salmonella virulence genes. Nat. Med. 4, 1247–1252.

    Article  CAS  Google Scholar 

  24. Guo, L., Lim, K.B., Gunn, J.S., et al. (1997). Regulation of lipid A modifications by Salmonella typhimurium. virulence genes phoP-phoQ Science 276, 250–253.

    Article  CAS  Google Scholar 

  25. Dang, L.H., Bettegowda, C., Huso, D.L., et al. (2001). Combination bacteriolytic therapy for the treatment of experimental tumors. Proc. Natl. Acad. Sci. U S A 98, 15155–15160.

    Article  CAS  Google Scholar 

  26. Low, K.B., Ittensohn, M., Luo, X., et al. (2004). Construction of VNP20009: A novel, genetically stable antibiotic-sensitive strain of tumor-targeting Salmonella. for parenteral administation in humans Methods Mol. Med. 90, 47–60.

    CAS  Google Scholar 

  27. Hohmann, E.L, Oletta, C.A., Killeen, K.P., et al. (1996). phoP/phoQ-deleted Salmonella typhi. (Ty800) is a safe and immunogenic single-dose typhoid fevr vaccine in volunteers J. Infect. Dis. 173, 1948–1014.

    Article  Google Scholar 

  28. Hohmann, E.L., Oletta, C.A., and Miller, S.I. (1996). Evaluation of a phoP/phoQ-deleted, aroA-deleted live oral Salmonella typhi vaccine strain in human volunteers. Vaccine 14, 19–24.

    Article  CAS  Google Scholar 

  29. Koslowski, J.M., Fidler, I.J., Campbell, D., et al. (1984). Metastatic behavior of human tumor cell lines grown in the nude mice. Cancer Res. 44, 3522–3529.

    Google Scholar 

  30. Hoffman, R.M. (1999). Orthotopic metastatic mouse models for anticancer discovery and evaluation: a bridge to the clinic. Invest. New Drugs 17, 343–359.

    Article  CAS  Google Scholar 

  31. Davies, J. and Jimenez, A. (1980). A new selective agent for eukayotic cloning vector. Am. J. Trop. Med. Hyg. 29, (5 Suppl.)1089–1092.

    CAS  Google Scholar 

  32. Bar-Nun, S., et al. (1983). G-418, an enlongation inhibitor of 80S ribosomes. Biochem. Biophys. Acta 741, 123–127.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Xu , DQ. et al. (2009). Bacterial Delivery of siRNAs: A New Approach to Solid Tumor Therapy. In: Sioud, M. (eds) siRNA and miRNA Gene Silencing. Methods in Molecular Biology, vol 487. Humana Press. https://doi.org/10.1007/978-1-60327-547-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-547-7_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-546-0

  • Online ISBN: 978-1-60327-547-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics