Skip to main content
Book cover

Helicases pp 57–83Cite as

Experimental and Computational Analysis of DNA Unwinding and Polymerization Kinetics

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 587))

Abstract

DNA unwinding and polymerization are complex processes involving many intermediate species in the reactions. Our understanding of these processes is limited because the rates of the reactions or the existence of intermediate species is not apparent without specially designed experimental techniques and data analysis procedures. In this chapter we describe how pre-steady state and single-turnover measurements analyzed by model-based methods can be used for estimating the elementary rate constants. Using the hexameric helicase and the DNA polymerase from bacteriophage T7 as model systems, we provide stepwise procedures for measuring the kinetics of the reactions they catalyze based on radioactivity and fluorescence. We also describe analysis of the experimental measurements using publicly available models and software gfit (http://gfit.sf.net).

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lohman T. M. (1993) Helicase-catalyzed DNA unwinding. J. Biol. Chem. 268, 2269–2272.

    PubMed  CAS  Google Scholar 

  2. Lohman T. M., Tomko E. J., and Wu C. G. (2008) Non-hexameric DNA helicases and translocases: mechanisms and regulation. Nat. Rev. Mol. Cell Biol. 9, 391–401.

    Article  PubMed  CAS  Google Scholar 

  3. Patel S. S. and Donmez I. (2006) Mechanisms of helicases. J. Biol. Chem. 281, 18265–18268.

    Article  PubMed  CAS  Google Scholar 

  4. Patel S. S. and Picha K. M. (2000) Structure and function of hexameric helicases. Annu. Rev. Biochem. 69, 651–697.

    Article  PubMed  CAS  Google Scholar 

  5. Donmez I., Rajagopal V., Jeong Y. J., and Patel S. S. (2007) Nucleic acid unwinding by hepatitis C virus and bacteriophage t7 helicases is sensitive to base pair stability. J. Biol. Chem. 282, 21116–21123.

    Article  PubMed  CAS  Google Scholar 

  6. Stano N. M., Jeong Y. J., Donmez I., Tummalapalli P., Levin M. K., and Patel S. S. (2005) DNA synthesis provides the driving force to accelerate DNA unwinding by a helicase. Nature 435, 370–373.

    Article  PubMed  CAS  Google Scholar 

  7. Egelman E. H., Yu X., Wild R., Hingorani M. M., and Patel S. S. (1995) Bacteriophage T7 helicase/primase proteins form rings around single-stranded DNA that suggest a general structure for hexameric helicases. Proc. Natl. Acad. Sci. USA 92, 3869–3873.

    Article  PubMed  CAS  Google Scholar 

  8. Singleton M. R., Sawaya M. R., Ellenberger T., and Wigley D. B. (2000) Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides. Cell 101, 589–600.

    Article  PubMed  CAS  Google Scholar 

  9. Toth E. A., Li Y., Sawaya M. R., Cheng Y., and Ellenberger T. (2003) The crystal structure of the bifunctional primase-helicase of bacteriophage t7. Mol. Cell 12, 1113–1123.

    Article  PubMed  CAS  Google Scholar 

  10. Tabor S. and Richardson C. C. (1981) Template recognition sequence for RNA primer synthesis by gene 4 protein of bacteriophage T7. Proc. Natl. Acad. Sci. U.S.A. 78, 205–209.

    Article  PubMed  CAS  Google Scholar 

  11. Kim D. E., Narayan M., and Patel S. S. (2002) T7 DNA helicase: a molecular motor that processively and unidirectionally translocates along single-stranded DNA. J. Mol. Biol. 321, 807–819.

    Article  PubMed  CAS  Google Scholar 

  12. Rasnik I., Jeong Y. J., McKinney S. A., Rajagopal V., Patel S. S., and Ha T. (2008) Branch migration enzyme as a Brownian ratchet. EMBO J. 27, 1727–1735.

    Article  PubMed  CAS  Google Scholar 

  13. Ahnert P. and Patel S. S. (1997) Asymmetric interactions of hexameric bacteriophage T7 DNA helicase with the 5'- and 3'-tails of the forked DNA substrate. J. Biol. Chem. 272, 32267–32273.

    Article  PubMed  CAS  Google Scholar 

  14. Hacker K. J. and Johnson K. A. (1997) A hexameric helicase encircles one DNA strand and excludes the other during DNA unwinding. Biochemistry 36, 14080–14087.

    Article  PubMed  CAS  Google Scholar 

  15. Kaplan D. L., Davey M. J., and O’Donnell M. (2003) Mcm4,6,7 uses a ‘pump in ring’ mechanism to unwind DNA by steric exclusion and actively translocate along a duplex. J. Biol. Chem. 278, 49171–49182.

    Article  PubMed  CAS  Google Scholar 

  16. Kaplan D. L. (2000) The 3'-tail of a forked-duplex sterically determines whether one or two DNA strands pass through the central channel of a replication-fork helicase. J. Mol. Biol. 301, 285–299.

    Article  PubMed  CAS  Google Scholar 

  17. Jezewska M. J., Rajendran S., Bujalowska D., and Bujalowski W. (1998) Does single-stranded DNA pass through the inner channel of the protein hexamer in the complex with the Escherichia coli DnaB Helicase? Fluorescence energy transfer studies. J. Biol. Chem. 273, 10515–10529.

    Article  PubMed  CAS  Google Scholar 

  18. Doublie S., Tabor S., Long A. M., Richardson C. C., and Ellenberger T. (1998) Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 A resolution. Nature 391, 251–258.

    Article  PubMed  CAS  Google Scholar 

  19. Modrich P. and Richardson C. C. (1975) Bacteriophage T7 Deoxyribonucleic acid replication in vitro. A protein of Escherichia coli required for bacteriophage T7 DNA polymerase activity. J. Biol. Chem. 250, 5508–5514.

    PubMed  CAS  Google Scholar 

  20. Tabor S., Huber H. E., and Richardson C. C. (1987) Escherichia coli thioredoxin confers processivity on the DNA polymerase activity of the gene 5 protein of bacteriophage T7. J. Biol. Chem. 262, 16212–16223.

    PubMed  CAS  Google Scholar 

  21. Ha T., Rasnik I., Cheng W., Babcock H. P., Gauss G. H., Lohman T. M., and Chu S. (2002) Initiation and re-initiation of DNA unwinding by the Escherichia coli Rep helicase. Nature 419, 638–641.

    Article  PubMed  CAS  Google Scholar 

  22. Dessinges M. N., Lionnet T., Xi X. G., Bensimon D., and Croquette V. (2004) Single-molecule assay reveals strand switching and enhanced processivity of UvrD. Proc. Natl. Acad. Sci. U.S.A. 101, 6439–6444.

    Article  PubMed  CAS  Google Scholar 

  23. Dumont S., Cheng W., Serebrov V., Beran R. K., Tinoco I., Jr., Pyle A. M., and Bustamante C. (2006) RNA translocation and unwinding mechanism of HCV NS3 helicase and its coordination by ATP. Nature 439, 105–108.

    Article  PubMed  CAS  Google Scholar 

  24. Lee J. B., Hite R. K., Hamdan S. M., Xie X. S., Richardson C. C., and van Oijen A. M. (2006) DNA primase acts as a molecular brake in DNA replication. Nature 439, 621–624.

    Article  PubMed  CAS  Google Scholar 

  25. van Oijen A. M. (2007) Single-molecule studies of complex systems: the replisome. Mol. Biosyst. 3, 117–125.

    Article  PubMed  Google Scholar 

  26. Johnson D. S., Bai L., Smith B. Y., Patel S. S., and Wang M. D. (2007) Single-molecule studies reveal dynamics of DNA unwinding by the ring-shaped T7 helicase. Cell 129, 1299–1309.

    Article  PubMed  CAS  Google Scholar 

  27. van Oijen A. M. (2008) Cutting the forest to see a single tree? Nat. Chem. Biol. 4, 440–443.

    Article  PubMed  Google Scholar 

  28. Tanner N. A., Hamdan S. M., Jergic S., Schaeffer P. M., Dixon N. E., and van Oijen A. M. (2008) Single-molecule studies of fork dynamics in Escherichia coli DNA replication. Nat. Struct. Mol. Biol. 15, 170–176.

    Article  PubMed  CAS  Google Scholar 

  29. Lionnet T., Spiering M. M., Benkovic S. J., Bensimon D., and Croquette V. (2007) Real-time observation of bacteriophage T4 gp41 helicase reveals an unwinding mechanism. Proc. Natl. Acad. Sci. U.S.A. 104, 19790–19795.

    Article  PubMed  CAS  Google Scholar 

  30. Ali J. A. and Lohman T. M. (1997) Kinetic measurement of the step size of DNA unwinding by Escherichia coli UvrD helicase. Science 275, 377–380.

    Article  PubMed  CAS  Google Scholar 

  31. Jeong Y. J., Levin M. K., and Patel S. S. (2004) The DNA-unwinding mechanism of the ring helicase of bacteriophage T7. Proc. Natl. Acad. Sci. U.S.A. 101, 7264–7269.

    Article  PubMed  CAS  Google Scholar 

  32. Picha K. M. and Patel S. S. (1998) Bacteriophage T7 DNA helicase binds dTTP, forms hexamers, and binds DNA in the absence of Mg2+. The presence of dTTP is sufficient for hexamer formation and DNA binding. J. Biol. Chem. 273, 27315–27319.

    Article  PubMed  CAS  Google Scholar 

  33. Levin M. K., Hingorani M. H., Holmes R. M., Patel S. S. and Carson J. H. (2009) Model-based global analysis of heterogeneous experimental data using gfit. Methods Mol. Biol. 500, 335–359, Humana Press Inc.

    Article  PubMed  CAS  Google Scholar 

  34. Patel S. S., Bandwar R. P., and Levin M. K. (2002) Transient-state kinetics and computational analysis of transcription initiation. The practical approach series/Kinetic analysis of macromolecules (Johnson K. A., Ed.), Oxford University Press, Oxford.

    Google Scholar 

  35. Lucius A. L., Maluf N. K., Fischer C. J., and Lohman T. M. (2003) General methods for analysis of sequential ‘n-step’ kinetic mechanisms: application to single turnover kinetics of helicase-catalyzed DNA unwinding. Biophys. J. 85, 2224–2239.

    Article  PubMed  CAS  Google Scholar 

  36. Patel S. S., Rosenberg A. H., Studier F. W., and Johnson K. A. (1992) Large scale purification and biochemical characterization of T7 primase/helicase proteins. Evidence for homodimer and heterodimer formation. J. Biol. Chem. 267, 15013–15021.

    PubMed  CAS  Google Scholar 

  37. Patel S. S., Wong I., and Johnson K. A. (1991) Pre-steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant. Biochemistry 30, 511–525.

    Article  PubMed  CAS  Google Scholar 

  38. Lohman T. M., Green J. M., and Beyer R. S. (1986) Large-scale overproduction and rapid purification of the Escherichia coli ssb gene product. Expression of the ssb gene under lambda PL control. Biochemistry 25, 21–25.

    Article  PubMed  CAS  Google Scholar 

  39. Donmez I. and Patel S. S. (2008) Coupling of DNA unwinding to nucleotide hydrolysis in a ring-shaped helicase. EMBO J. 27, 1718–1726.

    Article  PubMed  CAS  Google Scholar 

  40. Cavaluzzi M. J. and Borer P. N. (2004) Revised UV extinction coefficients for nucleoside-5'-monophosphates and unpaired DNA and RNA. Nucleic Acids Res. 32, e13.

    Article  PubMed  Google Scholar 

  41. Kallansrud G. and Ward B. (1996) A comparison of measured and calculated single- and double-stranded oligodeoxynucleotide extinction coefficients. Anal. Biochem. 236, 134–138.

    Article  PubMed  CAS  Google Scholar 

  42. Sjoback R., Nygren J., and Kubista M. (1995) Absorption and fluorescence properties of fluorescein. Spectrochim. Acta. [A] 51, 7–21.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the Patel lab members for proofreading the chapter and testing the models. This work was supported by National Institute of Health grant (GM55310).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Pandey, M., Levin, M.K., Patel, S.S. (2009). Experimental and Computational Analysis of DNA Unwinding and Polymerization Kinetics. In: Abdelhaleem, M. (eds) Helicases. Methods in Molecular Biology, vol 587. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-355-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-355-8_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-354-1

  • Online ISBN: 978-1-60327-355-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics