Skip to main content

Assessing Potential Functionality of Catechol-O-methyltransferase (COMT) Polymorphisms Associated with Pain Sensitivity and Temporomandibular Joint Disorders

  • Protocol
  • First Online:
Analgesia

Part of the book series: Methods in Molecular Biology ((MIMB,volume 617))

Abstract

Catechol-O-methyltransferase (COMT) is an enzyme that plays a key role in the modulation of catechol-dependent functions such as cognition, cardiovascular function, and pain processing. Recently, our group demonstrated that three common haplotypes of the human COMT gene, divergent in two synonymous and one nonsynonymous position, are associated with experimental pain sensitivity and onset of temporomandibular joint disorder. In order to determine the functional mechanisms whereby these haplotypes contribute to pain processing, a series of in vitro experiments were performed. Haplotypes divergent in synonymous changes exhibited the largest difference in COMT enzymatic activity because of reduced amount of translated protein. The major COMT haplotypes varied significantly with respect to mRNA local stem-loop structures such that the most stable structure was associated with the lowest protein levels and enzymatic activity. Site-directed mutagenesis that eliminated the stable structure restored the amount of translated protein. These data provide the first demonstration that combinations of commonly observed alleles in the coding region of the human COMT gene can significantly affect the secondary structure of corresponding mRNA transcripts, which in turn leads to dramatic alterations in the translation efficiency of enzyme crucial for a variety of essential functions. The protocols applied to the study of these molecular genetic mechanisms are detailed herein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mannisto PT, Kaakkola S (1999) Catechol-O-methyltransferase (COMT): biochemistry, molecular biology, pharmacology, and clinical efficacy of the new selective COMT inhibitors. Pharmacol Rev 51:593–628

    PubMed  CAS  Google Scholar 

  2. Diatchenko L, Slade GD, Nackley AG, Bhalang K, Sigurdsson A, Belfer I, Goldman D, Xu K, Shabalina SA, Shagin D et al (2005) Genetic basis for individual variations in pain perception and the development of a chronic pain condition. Hum Mol Genet 14:135–143

    Article  PubMed  CAS  Google Scholar 

  3. Marbach JJ, Levitt M (1976) Erythrocyte catechol-O-methyltransferase activity in facial pain patients. J Dent Res 55:711

    Article  PubMed  CAS  Google Scholar 

  4. Rakvag TT, Klepstad P, Baar C, Kvam TM, Dale O, Kaasa S, Krokan HE, Skorpen F (2005) The Val158Met polymorphism of the human catechol-O-methyltransferase (COMT) gene may influence morphine requirements in cancer pain patients. Pain 116:73–78

    Article  PubMed  CAS  Google Scholar 

  5. Zubieta JK, Heitzeg MM, Smith YR, Bueller JA, Xu K, Xu Y, Koeppe RA, Stohler CS, Goldman D (2003) COMT val158met genotype affects mu-opioid neurotransmitter responses to a pain stressor. Science 299:1240–1243

    Article  PubMed  CAS  Google Scholar 

  6. Yampolsky LY, Kondrashov FA, Kondrashov AS (2005) Distribution of the strength of selection against amino acid replacements in human proteins. Hum Mol Genet 14:3191–3201

    Article  PubMed  CAS  Google Scholar 

  7. Knight JC (2005) Regulatory polymorphisms underlying complex disease traits. J Mol Med 83:97–109

    Article  PubMed  CAS  Google Scholar 

  8. Nackley AG, Shabalina SA, Tchivileva IE, Satterfield K, Korchynskyi O, Makarov SS, Maixner W, Diatchenko L (2006) Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 314:1930–1933

    Article  PubMed  CAS  Google Scholar 

  9. Lennon G, Auffray C, Polymeropoulos M, Soares MB (1996) The I.M.A.G.E. Consortium: an integrated molecular analysis of genomes and their expression. Genomics 33:151–152

    Article  PubMed  CAS  Google Scholar 

  10. Strausberg RL, Feingold EA, Grouse LH, Derge JG, Klausner RD, Collins FS, Wagner L, Shenmen CM, Schuler GD, Altschul SF et al (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences. Proc Natl Acad Sci U S A 99:16899–16903

    Article  PubMed  Google Scholar 

  11. Masuda M, Tsunoda M, Yusa Y, Yamada S, Imai K (2002) Assay of catechol-O-methyltransferase activity in human erythrocytes using nore­pinephrine as a natural substrate. Ann Clin Biochem 39:589–594

    Article  PubMed  CAS  Google Scholar 

  12. Harrison GP, Mayo MS, Hunter E, Lever AM (1998) Pausing of reverse transcriptase on retroviral RNA templates is influenced by secondary structures both 5′ and 3′ of the catalytic site. Nucleic Acids Res 26:3433–3442

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Inna Tchivileva and Katherine Satterfield for their help in developing the HPS LPS-like and HPS APS-like mutants and Drs. Svetlana Shabalina and William Maixner for their support in the development of these studies. Additionally, the authors would like to thank IBL Hamburg for their generous gift of normetanephrine ELISA kit components. This work was supported by the NIH/NCRR KL2-RR025746 and NIH/OBSSR R24-DK067674 awards to Andrea Nackley and the NIH/NIDCR R01-DE016558, PO1-NS065685, and U01-DE017018 awards Luda Diatchenko.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea G. Nackley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Nackley, A.G., Diatchenko, L. (2010). Assessing Potential Functionality of Catechol-O-methyltransferase (COMT) Polymorphisms Associated with Pain Sensitivity and Temporomandibular Joint Disorders. In: Szallasi, A. (eds) Analgesia. Methods in Molecular Biology, vol 617. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-323-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-323-7_28

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-322-0

  • Online ISBN: 978-1-60327-323-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics