Skip to main content

Testicular Germ Cell Tumors in Mice

New Ways to Study a Genetically Complex Trait

  • Protocol
Book cover Germline Stem Cells

Part of the book series: Methods in Molecular Biology™ ((MIMB,volume 450))

Summary

Testicular germ cell tumors (TGCTs) are the most common cancer affecting young men. Although TGCTs are common and the genetic component of susceptibility is unusually strong, discovery of TGCT susceptibility genes in humans has been challenging. The 129/Sv inbred mouse strain is an important experimental model for studying the genetic control of TGCT susceptibility. It is the only inbred mouse strain with an appreciable frequency of spontaneous TGCTs. TGCTs in 129/Sv males share various developmental and histological characteristics with human pediatric TGCTs. As in humans, susceptibility in 129/Sv is a genetically complex trait that is too complex for conventional genetic approaches. However, several genetic variants, when congenic or isogenic on the 129/Sv background, act as genetic modifiers of TGCT susceptibility. Alternative experimental approaches based on these modifier genes can be used to unravel the complex genetic control of TGCT susceptibility. We discuss the application of modifier genes in genetic interaction tests and sensitized polygenic trait analyses toward the understanding of the complex genetics and biology of TGCT susceptibility in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 1. Bishop, T. D., and Wing, A. (1998) Candidate regions for testicular cancer susceptibility genes. APMIS Suppl. 106, 64–72.

    Article  Google Scholar 

  2. 2. Bosl, G. J., and Motzer, R. J. (1997) Testicular germ-cell cancer. N. Engl. J. Med. 337, 242–253.

    Article  CAS  PubMed  Google Scholar 

  3. 3. Oosterhuis, J. W., and Looijenga, L. H. (2005) Testicular germ-cell tumours in a broader perspective. Nat. Rev. Cancer. 5, 210–222.

    Article  CAS  PubMed  Google Scholar 

  4. 4. Oosterhuis, J. W., Looijenga, L. H., van, E. J., and de, J. B. (1997) Chromosomal constitution and developmental potential of human germ cell tumors and teratomas. Cancer Genet. Cytogenet. 95, 96–102.

    Article  CAS  PubMed  Google Scholar 

  5. 5. Forman, D., Oliver, R. T., Brett, A. R., et al. (1992) Familial testicular cancer: a report of the UK family register, estimation of risk and an HLA class 1 sib-pair analysis. Br. J. Cancer. 65, 255–262.

    Article  CAS  PubMed  Google Scholar 

  6. 6. Lindelof, B., and Eklund, G. (2001) Analysis of hereditary component of cancer by use of a familial index by site. Lancet. 358, 1696–1698.

    Article  CAS  PubMed  Google Scholar 

  7. 7. Heimdal, K., Olsson, H., Tretli, S., Fossa, S. D., Borresen, A. L., and Bishop, D. T. (1997) A segregation analysis of testicular cancer based on Norwegian and Swedish families. Br. J. Cancer. 75, 1084–1087.

    Article  CAS  PubMed  Google Scholar 

  8. 8. Stevens, L., and Little, C. C. (1954) Spontaneous testicular teratomas in an inbred strain of mice. Proc. Natl. Acad. Sci. U. S. A. 40, 1080–1087.

    Article  CAS  PubMed  Google Scholar 

  9. 9. Rapley, E. A., Crockford, G. P., Teare, D., et al. (2000) Localization to Xq27 of a susceptibility gene for testicular germ-cell tumours. Nat. Genet. 24, 197–200.

    Article  CAS  PubMed  Google Scholar 

  10. 10. Nathanson, K. L., Kanetsky, P. A., Hawes, R., et al. (2005) The Y deletion gr/gr and susceptibility to testicular germ cell tumor. Am. J. Hum. Genet. 77, 1034–1043.

    Article  CAS  PubMed  Google Scholar 

  11. 11. Crockford, G. P. , Linger, R., Hockley, S., et al. (2006) Genome-wide linkage screen for testicular germ cell tumour susceptibility loci. Hum. Mol. Genet. 15, 443–451.

    Article  CAS  PubMed  Google Scholar 

  12. 12. Kunwar, P. S., Siekhaus, D. E., and Lehmann, R. (2006) In vivo migration: a germ cell perspective. Annu. Rev. Cell Dev. Biol. 22, 237–265.

    Article  CAS  PubMed  Google Scholar 

  13. 13. Tam, P. P., and Snow, M. H. (1981) Proliferation and migration of primordial germ cells during compensatory growth in mouse embryos. J. Embryol. Exp. Morphol. 64, 133–147.

    CAS  PubMed  Google Scholar 

  14. 14. McLaren, A. (1984) Meiosis and differentiation of mouse germ cells. Symp. Soc. Exp. Biol. 38, 7–23.

    CAS  PubMed  Google Scholar 

  15. 15. Stevens, L. C. (1967) The biology of teratomas. Adv. Morphog. 6, 1–31.

    CAS  PubMed  Google Scholar 

  16. 16. Stevens, L. C. (1967) Origin of testicular teratomas from primordial germ cells in mice. J. Natl. Cancer Inst. 38, 549–552.

    CAS  PubMed  Google Scholar 

  17. 17. Stevens, L. C. (1962) Testicular teratomas in fetal mice. J. Natl. Cancer Inst. 28, 247–267.

    CAS  PubMed  Google Scholar 

  18. 18. Stevens, L. C. (1966) Development of resistance to teratocarcinogenesis by primordial germ cells in mice. J. Natl. Cancer Inst. 37, 859–867.

    CAS  PubMed  Google Scholar 

  19. 19. Park, S. Y. , and Jameson, J. L. (2005) Minireview: transcriptional regulation of gonadal development and differentiation. Endocrinology. 146, 1035–1042.

    Article  CAS  PubMed  Google Scholar 

  20. 20. Chaillet, J. R., Vogt, T. F., Beier, D. R., and Leder, P. (1991) Parental-specific methylation of an imprinted transgene is established during gametogenesis and progressively changes during embryogenesis. Cell. 66, 77–83.

    Article  CAS  PubMed  Google Scholar 

  21. 21. De, F. M. (2000) Regulation of primordial germ cell development in the mouse. Int. J. Dev. Biol. 44, 575–580.

    Google Scholar 

  22. 22. Lee, J., Inoue, K., Ono, R., et al. (2002) Erasing genomic imprinting memory in mouse clone embryos produced from d 11.5 primordial germ cells. Development. 129, 1807–1817.

    Article  CAS  PubMed  Google Scholar 

  23. 23. Sato, S., Yoshimizu, T., Sato, E., and Matsui, Y. (2003) Erasure of methylation imprinting of Igf2r during mouse primordial germ-cell development. Mol. Reprod. Dev. 65, 41–50.

    Article  CAS  PubMed  Google Scholar 

  24. 24. Stevens, L. C. (1964) Experimental production of testicular teratomas in mice. Proc. Natl. Acad. Sci. U. S. A. 52, 654–661.

    Article  CAS  PubMed  Google Scholar 

  25. 25. Matin, A., Collin, G. B., Varnum, D. S., and Nadeau, J. H. (1998) Testicular teratocarcinogen-esis in mice—a review. APMIS. 106, 174–182.

    Article  CAS  PubMed  Google Scholar 

  26. 26. Rodriguez, E., Mathew, S., Reuter, V., Ilson, D. H., Bosl, G. J., and Chaganti, R. S. (1992) Cytogenetic analysis of 124 prospectively ascertained male germ cell tumors. Cancer Res. 52, 2285–2291.

    CAS  PubMed  Google Scholar 

  27. 27. Vos, A., Oosterhuis, J. W., de Jong, B., Buist, J., and Schraffordt, K. H. (1990) Cytogenetics of carcinoma in situ of the testis. Cancer Genet. Cytogenet. 46, 75–81.

    Article  CAS  PubMed  Google Scholar 

  28. 28. Looijenga, L. H., Verkerk, A. J., Dekker, M. C., van Gurp, R. J., Gillis, A. J., and Oosterhuis, J. W. (1998) Genomic imprinting in testicular germ cell tumours. APMIS. 106, 187–195.

    Article  CAS  PubMed  Google Scholar 

  29. 29. Stevens, L. C., and Hummel, K. P. (1957) A description of spontaneous congenital testicular teratomas in strain 129 mice. J. Natl. Cancer Inst. 18, 719–747.

    CAS  PubMed  Google Scholar 

  30. 30. Matin, A., Collin, G. B., Asada, Y., Varnum, D., and Nadeau, J. H. (1999) Susceptibility to testicular germ-cell tumours in a 129.MOLF-Chr 19 chromosome substitution strain. Nat. Genet. 23, 237–240.

    Article  CAS  PubMed  Google Scholar 

  31. 31. Stevens, L. C., and Mackensen, J. A. (1961) Genetic and environmental influences on terato-carcinogenesis in mice. J. Natl. Cancer Inst. 27, 443–453.

    Google Scholar 

  32. 32. Gidekel, S., Pizov, G., Bergman, Y. , and Pikarsky, E. (2003) Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell. 4, 361–370.

    Article  CAS  PubMed  Google Scholar 

  33. 33. Noguchi, T., and Stevens, L. C. (1982) Primordial germ cell proliferation in fetal testes in mouse strains with high and low incidences of congenital testicular teratomas. J. Natl. Cancer Inst. 69, 907–913.

    CAS  PubMed  Google Scholar 

  34. 34. Youngren, K. K., Coveney, D., Peng, X., et al. (2005) The Ter mutation in the dead end gene causes germ cell loss and testicular germ cell tumours. Nature. 435, 360–364.

    Article  CAS  PubMed  Google Scholar 

  35. 35. Harvey, M., McArthur, M. J., Montgomery, C. A., Jr., Bradley, A., and Donehower, L. A. (1993) Genetic background alters the spectrum of tumors that develop in p53deficient mice. FASEB J. 7, 938–943.

    CAS  PubMed  Google Scholar 

  36. 36. Kimura, T., Suzuki, A., Fujita, Y., et al. (2003) Conditional loss of PTEN leads to testicular teratoma and enhances embryonic germ cell production. Development. 130, 1691–1700.

    Article  CAS  PubMed  Google Scholar 

  37. 37. Di, V. D., Cito, L., Boccia, A., et al. (2005) Loss of the tumor suppressor gene PTEN marks the transition from intratubular germ cell neoplasias (ITGCN) to invasive germ cell tumors. Oncogene. 24, 1882–1894.

    Article  Google Scholar 

  38. 38. Lam, M. Y. , and Nadeau, J. H. (2003) Genetic control of susceptibility to spontaneous testicu-lar germ cell tumors in mice. APMIS. 111, 184–190.

    Article  PubMed  Google Scholar 

  39. 39. Lamoreux, M. L., Wakamatsu, K., and Ito, S. (2001) Interaction of major coat color gene functions in mice as studied by chemical analysis of eumelanin and pheomelanin. Pigment Cell Res. 14, 23–31.

    Article  CAS  PubMed  Google Scholar 

  40. 40. Parant, J. M., and Lozano, G. (2003) Disrupting TP53 in mouse models of human cancers. Hum. Mutat. 21, 321–326.

    Article  CAS  PubMed  Google Scholar 

  41. 41. Moore, K. J., Swing, D. A., Copeland, N. G., and Jenkins, N. A. (1990) Interaction of the murine dilute suppressor gene (dsu) with 14 coat color mutations. Genetics. 125, 421–430.

    CAS  PubMed  Google Scholar 

  42. 42. Lam, M. Y., Youngren, K. K., and Nadeau, J. H. (2004) Enhancers and suppressors of testicu-lar cancer susceptibility in single- and double-mutant mice. Genetics. 166, 925–933.

    Article  CAS  PubMed  Google Scholar 

  43. 43. Bolivar, V. J., Cook, M. N., and Flaherty, L. (2001) Mapping of quantitative trait loci with knockout/congenic strains. Genome Res. 11, 1549–1552.

    Article  CAS  PubMed  Google Scholar 

  44. 44. Simpson, E. M., Linder, C. C., Sargent, E. E., Davisson, M. T., Mobraaten, L. E., and Sharp, J. J. (1997) Genetic variation among 129 substrains and its importance for targeted mutagene-sis in mice. Nat. Genet. 16, 19–27.

    Article  CAS  PubMed  Google Scholar 

  45. 45. Armstrong, N. J., Brodnicki, T. C., and Speed, T. P. (2006) Mind the gap: analysis of marker-assisted breeding strategies for inbred mouse strains. Mamm. Genome. 17, 273–287.

    Article  PubMed  Google Scholar 

  46. 46. Youngren, K. K., Nadeau, J. H., and Matin, A. (2003) Testicular cancer susceptibility in the 129.MOLF-Chr19 mouse strain: additive effects, gene interactions and epigenetic modifications. Hum. Mol. Genet. 12, 389–398.

    Article  CAS  PubMed  Google Scholar 

  47. 47. Reusens, B., and Remacle, C. (2006) Programming of the endocrine pancreas by the early nutritional environment. Int. J. Biochem. Cell Biol. 38, 913–922.

    Article  CAS  PubMed  Google Scholar 

  48. 48. Wu, G., Bazer, F. W., Cudd, T. A., Meininger, C. J., and Spencer, T. E. (2004) Maternal nutrition and fetal development. J. Nutr. 134, 2169–2172.

    CAS  PubMed  Google Scholar 

  49. 49. Levin, B. E. (2006) Metabolic imprinting: critical impact of the perinatal environment on the regulation of energy homeostasis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 1107–1121.

    Article  CAS  PubMed  Google Scholar 

  50. 50. Fleming, T. P., Kwong, W. Y., Porter, R., et al. (2004) The embryo and its future. Biol. Reprod. 71, 1046–1054.

    Article  CAS  PubMed  Google Scholar 

  51. 51. Suomalainen, A. (1997) Mitochondrial DNA and disease. Ann. Med. 29, 235–246.

    Article  CAS  PubMed  Google Scholar 

  52. 52. Luft, R. (1994) The development of mitochondrial medicine. Proc. Natl. Acad. Sci. U. S. A. 91, 8731–8738.

    Article  CAS  PubMed  Google Scholar 

  53. 53. Morgan, H. D., Sutherland, H. G., Martin, D. I., and Whitelaw, E. (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat. Genet. 23, 314–318.

    Article  CAS  PubMed  Google Scholar 

  54. 54. Wolff, G. L., Kodell, R. L., Moore, S. R., and Cooney, C. A. (1998) Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J. 12, 949–957.

    CAS  PubMed  Google Scholar 

  55. 55. Matin, A., and Nadeau, J. H. (2001) Sensitized polygenic trait analysis. Trends Genet. 17, 727–731.

    Article  CAS  PubMed  Google Scholar 

  56. 56. Tanksley, S. D. (1993) Mapping polygenes. Annu. Rev. Genet. 27, 205–233.

    Article  CAS  PubMed  Google Scholar 

  57. 57. Collin, G. B., Asada, Y., Varnum, D. S., and Nadeau, J. H. (1996) DNA pooling as a quick method for finding candidate linkages in multigenic trait analysis: an example involving susceptibility to germ cell tumors. Mamm. Genome. 7, 68–70.

    Article  CAS  PubMed  Google Scholar 

  58. 58. Smigielski, E. M., Sirotkin, K., Ward, M., and Sherry, S. T. (2000) dbSNP: a database of single nucleotide polymorphisms. Nucleic Acids Res. 28, 352–355.

    Article  CAS  PubMed  Google Scholar 

  59. 59. Peters, L. L., Robledo, R. F., Bult, C. J., Churchill, G. A., Paigen, B. J., and Svenson, K. L. (2007) The mouse as a model for human biology: a resource guide for complex trait analysis. Nat. Rev. Genet. 8, 58–69.

    Article  CAS  PubMed  Google Scholar 

  60. 60. Silver, L. M. (1995) Mouse genetics: concepts and applications, Oxford University Press, New York.

    Google Scholar 

  61. 61. Khripin, Y. (2006) High-throughput genotyping with energy transfer-labeled primers. Methods Mol. Biol. 335, 215–240.

    CAS  PubMed  Google Scholar 

  62. 62. Stephens, M., Sloan, J. S., Robertson, P. D., Scheet, P., and Nickerson, D. A. (2006) Automating sequence-based detection and genotyping of SNPs from diploid samples. Nat. Genet. 38, 375–381.

    Article  CAS  PubMed  Google Scholar 

  63. 63. Romkes, M., and Buch, S. C. (2005) Genotyping technologies: application to biotransformation enzyme genetic polymorphism screening. Methods Mol. Biol. 291, 399–414.

    CAS  PubMed  Google Scholar 

  64. 64. Jordan, B., Charest, A., Dowd, J. F., et al. (2002) Genome complexity reduction for SNP genotyping analysis. Proc. Natl. Acad. Sci. U. S. A. 99, 2942–2947.

    Article  CAS  PubMed  Google Scholar 

  65. 65. Lindblad-Toh, K., Winchester, E., Daly, M. J., et al. (2000) Large-scale discovery and genotyping of single-nucleotide polymorphisms in the mouse. Nat. Genet. 24, 381–386.

    Article  CAS  PubMed  Google Scholar 

  66. 66. Zhao, Z. Z., Nyholt, D. R., Le, L., et al. (2006) KRAS variation and risk of endometriosis. Mol. Hum. Reprod. 12, 671–676.

    Article  CAS  PubMed  Google Scholar 

  67. 67. Manly, K. F., and Olson, J. M. (1999) Overview of QTL mapping software and introduction to map manager QT. Mamm. Genome. 10, 327–334.

    Article  CAS  PubMed  Google Scholar 

  68. 68. Lander, E. S., Green, P., Abrahamson, J., et al. (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics. 1, 174–181.

    Article  CAS  PubMed  Google Scholar 

  69. 69. Manly, K. F., Cudmore, R. H., Jr., and Meer, J. M. (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm. Genome. 12, 930–932.

    Article  CAS  PubMed  Google Scholar 

  70. 70. Broman, K. W., Wu, H., Sen, S., and Churchill, G. A. (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics. 19, 889–890.

    Article  CAS  PubMed  Google Scholar 

  71. 71. Lander, E., and Kruglyak, L. (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat. Genet. 11, 241–247.

    Article  CAS  PubMed  Google Scholar 

  72. 72. Churchill, G. A., and Doerge, R. W. (1994) Empirical threshold values for quantitative trait mapping. Genetics. 138, 963–971.

    CAS  PubMed  Google Scholar 

  73. 73. Muller, A. J., Teresky, A. K., and Levine, A. J. (2000) A male germ cell tumor-susceptibility-determining locus, pgct1, identified on murine chromosome 13. Proc. Natl. Acad. Sci. U. S. A. 97, 8421–8426.

    Article  CAS  PubMed  Google Scholar 

  74. 74. Singer, J. B., Hill, A. E., Burrage, L. C., et al. (2004) Genetic dissection of complex traits with chromosome substitution strains of mice. Science. 304, 445–448.

    Article  CAS  PubMed  Google Scholar 

  75. 75. Nadeau, J. H., Singer, J. B., Matin, A., and Lander, E. S. (2000) Analysing complex genetic traits with chromosome substitution strains. Nat. Genet. 24, 221–225.

    Article  CAS  PubMed  Google Scholar 

  76. 76. Hill, A. E., Lander, E. S., and Nadeau, J. H. (2006) Chromosome substitution strains: a new way to study genetically complex traits. Methods Mol. Med. 128, 153–172.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science + Business Media, LLC

About this protocol

Cite this protocol

Heaney, J.D., Nadeau, J.H. (2008). Testicular Germ Cell Tumors in Mice. In: Hou, S.X., Singh, S.R. (eds) Germline Stem Cells. Methods in Molecular Biology™, vol 450. Humana Press. https://doi.org/10.1007/978-1-60327-214-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-214-8_15

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-213-1

  • Online ISBN: 978-1-60327-214-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics