Skip to main content

Ribosomal Initiation Complexes Probed by Toeprinting and Effect of trans-Acting Translational Regulators in Bacteria

  • Protocol
  • First Online:
Book cover Riboswitches

Part of the book series: Methods in Molecular Biology ((MIMB,volume 540))

Summary

Toeprinting was developed to study the formation of ribosomal initiation complexes in bacteria. This approach, based on the inhibition of reverse transcriptase elongation, was used to monitor the effect of ribosomal components and translational factors on the formation of the active ribosomal initiation complex. Moreover, this method offers an easy way to study in vitro how mRNA conformational changes alter ribosome binding at the initiation site. These changes can be induced either by environmental cues (temperature, ion concentration), or by the binding of metabolites, regulatory proteins, and trans-acting RNAs. An experimental guide is given to follow the different steps of the formation of ribosomal initiation complexes in Escherichia coli and Staphylococcus aureus, and to monitor the mechanism of action of several regulators on translation initiation in vitro. Protocols to prepare the ribosome and the subunits are also given for Thermus thermophilus, Staphylococcus aureus, and Escherichia coli.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Serganov, A. and Patel, D. J. (2007). Ribozymes, riboswitches and beyond: regulation of gene expression without proteins. Nat. Rev. Genet. 8, 776–790.

    Article  PubMed  CAS  Google Scholar 

  2. Romby, P. and Springer, M. (2007). Translational control in prokaryotes. In Translational Control in Biology and Medicine (Hershey, J, Sonnenberg, N, Metthews, M, eds), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 807–832.

    Google Scholar 

  3. Narberhaus, F., Waldminghaus, T. and Chowdhury, S. (2006). RNA thermometers. FEMS Microbiol. Rev. 30, 3–16.

    Article  PubMed  CAS  Google Scholar 

  4. Coppins, R. L., Hall, K. B. and Groisman, E. A. (2007). The intricate world of riboswitches. Curr. Opin. Microbiol. 10, 176–181.

    Article  PubMed  CAS  Google Scholar 

  5. Romby, P. and Springer, M. (2003). Bacterial translational control at atomic resolution. Trends Genet. 19, 155–161.

    Article  PubMed  CAS  Google Scholar 

  6. Schlax, P. J. and Worhunsky, D. J. (2003). Translational repression mechanisms in prokaryotes. Mol. Microbiol. 48, 1157–1169.

    Article  PubMed  CAS  Google Scholar 

  7. Ehresmann, C., Ehresmann, B., Ennifar, E., Dumas, P., Garber, M., Mathy, N. et al (2004). Molecular mimicry in translational regulation: the case of ribosomal protein S15. RNA Biol. 1, 66–73.

    Article  PubMed  CAS  Google Scholar 

  8. Marzi, S., Myasnikov, A. G., Serganov, A., Ehresmann, C., Romby, P., Yusupov, M. et al (2007). Structured mRNAs regulate translation initiation by binding to the platform of the ribosome. Cell 130, 1019–1031.

    Article  PubMed  CAS  Google Scholar 

  9. Darfeuille, F., Unoson, C., Vogel, J. and Wagner, E. G. (2007). An antisense RNA inhibits translation by competing with standby ribosomes. Mol. Cell 26, 381–392.

    Article  PubMed  CAS  Google Scholar 

  10. Vogel, J. and Wagner, E. G. (2007). Target identification of small noncoding RNAs in bacteria. Curr. Opin. Microbiol. 10, 262–270.

    Article  PubMed  CAS  Google Scholar 

  11. Hartz, D., McPheeters, D. S., Traut, R. and Gold, L. (1988). Extension inhibition analysis of translation initiation complexes. Methods Enzymol. 164, 419–425.

    Article  PubMed  CAS  Google Scholar 

  12. Hartz, D., McPheeters, D. S. and Gold, L. (1989). Selection of the initiator tRNA by Escherichia coli initiation factors. Genes Dev. 3, 1899–1912.

    Article  PubMed  CAS  Google Scholar 

  13. Huttenhofer, A. and Noller, H. F. (1994). Footprinting mRNA–ribosome complexes with chemical probes. EMBO J. 13, 3892–3901.

    PubMed  CAS  Google Scholar 

  14. Sacerdot, C., Caillet, J., Graffe, M., Eyermann, F., Ehresmann, B., Ehresmann, C. et al (1998). The Escherichia coli threonyl-tRNA synthetase gene contains a split ribosomal binding site interrupted by a hairpin structure that is essential for autoregulation. Mol. Microbiol. 29, 1077–1090.

    Article  PubMed  CAS  Google Scholar 

  15. Yusupova, G. Z., Yusupov, M. M., Cate, J. H. and Noller, H. F. (2001). The path of messenger RNA through the ribosome. Cell 106, 233–241.

    Article  PubMed  CAS  Google Scholar 

  16. Jenner, L., Romby, P., Rees, B., Schulze-Briese, C., Springer, M., Ehresmann, C. et al (2005). Translational operator of mRNA on the ribosome: how repressor proteins exclude ribosome binding. Science 308, 120–123.

    Article  PubMed  CAS  Google Scholar 

  17. Korostelev, A., Trakhanov, S., Asahara, H., Laurberg, M., Lancaster, L. and Noller, H. F. (2007). Interactions and dynamics of the Shine Dalgarno helix in the 70S ribosome. Proc. Natl Acad. Sci. U. S. A. 104, 16840–16843.

    Article  PubMed  CAS  Google Scholar 

  18. Hartz, D., McPheeters, D. S., Green, L. and Gold, L. (1991). Detection of Escherichia coli ribosome binding at translation initiation sites in the absence of tRNA. J. Mol. Biol. 218, 99–105.

    Article  PubMed  CAS  Google Scholar 

  19. Philippe, C., Eyermann, F., Benard, L., Portier, C., Ehresmann, B. and Ehresmann, C. (1993). Ribosomal protein S15 from Escherichia coli modulates its own translation by trapping the ribosome on the mRNA initiation loading site. Proc. Natl Acad. Sci. U. S. A. 90, 4394–4398.

    Article  PubMed  CAS  Google Scholar 

  20. Ringquist, S., MacDonald, M., Gibson, T. and Gold, L. (1993). Nature of the ribosomal mRNA track: analysis of ribosome-binding sites containing different sequences and secondary structures. Biochemistry 32, 10254–10262.

    Article  PubMed  CAS  Google Scholar 

  21. Qin, Y., Polacek, N., Vesper, O., Staub, E., Einfeldt, E., Wilson, D. N. et al (2006). The highly conserved LepA is a ribosomal elongation factor that back-translocates the ribosome. Cell 127, 721–733.

    Article  PubMed  CAS  Google Scholar 

  22. Waldminghaus, T., Heidrich, N., Brantl, S. and Narberhaus, F. (2007). FourU: a novel type of RNA thermometer in Salmonella. Mol. Microbiol. 65, 413–424.

    Article  PubMed  CAS  Google Scholar 

  23. Brunel, C., Romby, P., Moine, H., Caillet, J., Grunberg-Manago, M., Springer, M. et al (1993). Translational regulation of the Escherichia coli threonyl-tRNA synthetase gene: structural and functional importance of the thrS operator domains. Biochimie 75, 1167–7119.

    Article  PubMed  CAS  Google Scholar 

  24. Sharma, C. M., Darfeuille, F., Plantinga, T. H. and Vogel, J. (2007). A small RNA regulates multiple ABC transporter mRNAs by targeting C/A-rich elements inside and upstream of ribosome-binding sites. Genes Dev 21, 2804–2817.

    Article  PubMed  CAS  Google Scholar 

  25. Boisset, S., Geissmann, T., Huntzinger, E., Fechter, P., Bendridi, N., Possedko, M. et al (2007). Staphylococcus aureus RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator Rot by an antisense mechanism. Genes Dev. 21, 1353–1366.

    Article  PubMed  CAS  Google Scholar 

  26. Milligan, J. F. and Uhlenbeck, O. C. (1989). Synthesis of small RNAs using T7 RNA polymerase. Methods Enzymol. 180, 51–62.

    Article  PubMed  CAS  Google Scholar 

  27. Romaniuk, P. J., de Stevenson, I. L. and Wong, H. H. (1987). Defining the binding site of Xenopus transcription factor IIIA on 5S RNA using truncated and chimeric 5S RNA molecules. Nucleic Acids Res. 15, 2737–2755.

    Article  PubMed  CAS  Google Scholar 

  28. Jahn, M. J., Jahn, D., Kumar, A. M. and Soll, D. (1991). Mono Q chromatography permits recycling of DNA template and purification of RNA transcripts after T7 RNA polymerase reaction. Nucleic Acids Res. 19, 2786.

    Article  PubMed  CAS  Google Scholar 

  29. Marzi, S., Fechter, P., Chevalier, C., Romby, P. and Geissmann, T. RNA switches regulate initiation of translation in bacteria. Biol. Chem. 389, 585–598.

    Google Scholar 

  30. Novick, R. P. and Jiang, D. (2003). The staphylococcal saeRS system coordinates environmental signals with agr quorum sensing. Microbiology 149, 2709–2717.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Anne-Catherine Helfer for the toeprinting assays performed on E. coli rpsO mRNA. This work was supported by financial support from the Centre National de la Recherche Scientifique (UPR 9002 CNRS), from the University Louis Pasteur of Strasbourg, from the Ministère de la Recherche (ANR05-MIIME, ANR07-BLANC), from the European Community (FOSRAK, EC005120; BacRNA EC018618).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Fechter, P., Chevalier, C., Yusupova, G., Yusupov, M., Romby, P., Marzi, S. (2009). Ribosomal Initiation Complexes Probed by Toeprinting and Effect of trans-Acting Translational Regulators in Bacteria . In: Serganov, A. (eds) Riboswitches. Methods in Molecular Biology, vol 540. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-59745-558-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-558-9_18

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-934115-88-6

  • Online ISBN: 978-1-59745-558-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics