Skip to main content

Computational Analysis of the Yeast Proteome: Understanding and Exploiting Functional Specificity in Genomic Data

  • Protocol
  • First Online:
Yeast Functional Genomics and Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 548))

Summary

Modern experimental techniques have produced a wealth of high-throughput data that has enabled the ongoing genomic revolution. As the field continues to integrate experimental and computational analyzes of this data, it is essential that performance evaluations of high-throughput results be carried out in a consistent and biologically informative manner. Here, we present an overview of evaluation techniques for high-throughput experimental data and computational methods, and we discuss a number of potential pitfalls in this process. These primarily involve the biological diversity of genomic data, which can be masked or misrepresented in overly simplified global evaluations. We describe systems for preserving information about biological context during dataset evaluation, which can help to ensure that multiple different evaluations are more directly comparable. This biological variety in high-throughput data can also be taken advantage of computationally through data integration and process specificity to produce richer systems-level predictions of cellular function. An awareness of these considerations can greatly improve the evaluation and analysis of any high-throughput experimental dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kitano H. (2002). Looking beyond the details: a rise in system-oriented approaches in genetics and molecular biology. Curr Genet;41(1):1–10.

    Article  PubMed  Google Scholar 

  2. Steinmetz LM, Deutschbauer AM. (2002). Gene function on a genomic scale. J Chromatogr B Analyt Technol Biomed Life Sci;782(1–2):151–63.

    PubMed  Google Scholar 

  3. Ideker T, Galitski T, Hood L. (2001). A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet;2:343–72.

    Article  PubMed  Google Scholar 

  4. Cahill DJ, Nordhoff E. (2003). Protein arrays and their role in proteomics. Adv Biochem Eng Biotechnol;83:177–87.

    PubMed  Google Scholar 

  5. Sydor JR, Nock S. (2003). Protein expression profiling arrays: tools for the multiplexed high-throughput analysis of proteins. Proteome Sci;1(1):3.

    Article  PubMed  Google Scholar 

  6. Oleinikov AV, Gray MD, Zhao J, Montgomery DD, Ghindilis AL, Dill K. (2003). Self-assembling protein arrays using electronic semiconductor microchips and in vitro translation. J Proteome Res;2(3):313–9.

    Article  PubMed  Google Scholar 

  7. Huang RP. (2003). Protein arrays,  an excellent tool in biomedical research. Front Biosci;8:d559–76.

    Article  PubMed  Google Scholar 

  8. Cutler P. (2003) Protein arrays: the current state-of-the-art. Proteomics;3(1):3–18.

    Article  Google Scholar 

  9. Bartel PL, Fields S. (1995). Analyzing protein-protein interactions using two-hybrid system. Methods Enzymol;254:241–63.

    Article  PubMed  Google Scholar 

  10. Grunenfelder B, Winzeler EA. (2002). Treasures and traps in genome-wide data sets: case examples from yeast. Nat Rev Genet;3(9):653–61.

    Article  PubMed  Google Scholar 

  11. Chen Y, Xu D. (2003). Computational analyses of high-throughput protein-protein interaction data. Curr Protein Pept Sci;4(3):159–81.

    Article  PubMed  Google Scholar 

  12. Bader GD, Heilbut A, Andrews B, Tyers M, Hughes T, Boone C. (2003). Functional genomics and proteomics: charting a multidimensional map of the yeast cell. Trends Cell Biol;13(7):344–56.

    Article  PubMed  Google Scholar 

  13. von Mering C, Krause R, Snel B, et al. (2002). Comparative assessment of large-scale data sets of protein-protein interactions. Nature;417(6887):399–403.

    Article  PubMed  Google Scholar 

  14. Deane CM, Salwinski L, Xenarios I, Eisenberg D. (2002). Protein interactions: two methods for assessment of the reliability of high throughput observations. Mol Cell Proteomics;1(5):349–56.

    Article  PubMed  Google Scholar 

  15. Ito T, Chiba T, Ozawa R, Yoshida M, Hattori M, Sakaki Y. (2001). A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc Natl Acad Sci USA;98(8):4569–74.

    Article  PubMed  Google Scholar 

  16. Yue H, Eastman PS, Wang BB, et al. (2001). An evaluation of the performance of cDNA microarrays for detecting changes in global mRNA expression. Nucleic Acids Res;29(8):E41-1.

    Article  PubMed  Google Scholar 

  17. Primig M, Williams RM, Winzeler EA, et al. (2000). The core meiotic transcriptome in budding yeasts. Nat Genet;26(4):415–23.

    Article  PubMed  Google Scholar 

  18. Myers CL, Barrett DR, Hibbs MA, Huttenhower C, Troyanskaya OG. (2006). Finding function: evaluation methods for functional genomic data. BMC Genomics;7:187.

    Article  PubMed  Google Scholar 

  19. Lee I, Date SV, Adai AT, Marcotte EM. (2004). A probabilistic functional network of yeast genes. Science;306(5701):1555–8.

    Article  PubMed  Google Scholar 

  20. van Rijsbergen CJ. (1979). Information retrieval. London, Boston: Butterworth.

    Google Scholar 

  21. Egan JP. (1975). Signal detection theory and ROC-analysis. New York: Academic.

    Google Scholar 

  22. Davis J, Goadrich M. (2006). The relationship between precision-recall and ROC curves. 23rd international Conference on Machine Learning, 2006, Pittsburgh, PA: ACM. pp233–40.

    Google Scholar 

  23. Mewes HW, Frishman D, Guldener U, et al. (2002). MIPS: a database for genomes and protein sequences. Nucleic Acids Res;30(1):31–4.

    Article  PubMed  Google Scholar 

  24. Ball CA, Dolinski K, Dwight SS, et al. (2000). Integrating functional genomic information into the Saccharomyces genome database. Nucleic Acids Res;28(1):77–80.

    Article  PubMed  Google Scholar 

  25. Kanehisa M, Goto S. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res;28(1):27–30.

    Article  PubMed  Google Scholar 

  26. Ashburner M, Ball CA, Blake JA, et al. (2000). Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet;25(1):25–9.

    Google Scholar 

  27. Choi JK, Yu U, Kim S, Yoo OJ. (2003). Combining multiple microarray studies and modeling interstudy variation. Bioinformatics (Oxford, England);19(Suppl 1):i84–90.

    Article  Google Scholar 

  28. Moreau Y, Aerts S, De Moor B, De Strooper B, Dabrowski M. (2003). Comparison and meta-analysis of microarray data: from the bench to the computer desk. Trends Genet;19(10):570–7.

    Article  PubMed  Google Scholar 

  29. Hu P, Greenwood CM, Beyene J. (2005). Integrative analysis of multiple gene expression profiles with quality-adjusted effect size models. BMC Bioinformatics;6:128.

    Article  PubMed  Google Scholar 

  30. Troyanskaya OG, Dolinski K, Owen AB, Altman RB, Botstein D. (2003). A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae). Proc Natl Acad Sci USA;100(14):8348–53.

    Article  PubMed  Google Scholar 

  31. Jaimovich A, Elidan G, Margalit H, Friedman N. (2006). Towards an integrated protein-protein interaction network: a relational Markov network approach. J Comput Biol;13(2):145–64.

    Article  PubMed  Google Scholar 

  32. Deng M, Chen T, Sun F. (2004). An integrated probabilistic model for functional prediction of proteins. J Comput Biol;11(2–3): 463–75.

    Article  PubMed  Google Scholar 

  33. Karaoz U, Murali TM, Letovsky S, et al. (2004). Whole-genome annotation by using evidence integration in functional-linkage networks. Proc Natl Acad Sci USA;101(9):2888–93.

    Article  PubMed  Google Scholar 

  34. Barutcuoglu Z, Schapire RE, Troyanskaya OG. (2006). Hierarchical multi-label prediction of gene function. Bioinformatics (Oxford, England);22(7):830–6.

    Article  Google Scholar 

  35. Myers CL, Robson D, Wible A, et al. (2005). Discovery of biological networks from diverse functional genomic data. Genome Biol;6(13):R114.

    Article  PubMed  Google Scholar 

  36. Myers CL, Troyanskaya OG. (2007). Context-sensitive data integration and prediction of biological networks. Bioinformatics (Oxford, England);23(17):2322–30.

    Article  Google Scholar 

  37. Hibbs MA, Hess DC, Myers CL, Huttenhower C, Li K, Troyanskaya OG. (2007). Exploring the functional landscape of gene expression: directed search of large microarray compendia. Bioinformatics (Oxford, England);23(20):2692–9.

    Article  Google Scholar 

  38. Alter O, Brown PO, Botstein D. (2000). Singular value decomposition for genome-wide expression data processing and modeling. Proc Natl Acad Sci USA;97(18):10101–6.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga G. Troyanskaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Huttenhower, C., Myers, C.L., Hibbs, M.A., Troyanskaya, O.G. (2009). Computational Analysis of the Yeast Proteome: Understanding and Exploiting Functional Specificity in Genomic Data. In: Stagljar, I. (eds) Yeast Functional Genomics and Proteomics. Methods in Molecular Biology, vol 548. Humana Press. https://doi.org/10.1007/978-1-59745-540-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-540-4_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-71-8

  • Online ISBN: 978-1-59745-540-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics