Skip to main content

Interaction of Genetic and Environmental Factors in Saccharomyces cerevisiae Meiosis: The Devil is in the Details

  • Protocol
  • First Online:
Book cover Meiosis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 557))

Abstract

One of the most important principles of scientific endeavour is that the results be reproducible from lab to lab. Although research groups rarely redo the published experiments of their colleagues, research plans almost always rely on the work of someone else. The assumption is that if the same experiment were repeated in another lab, results would be so similar that the same interpretation would be favoured. This notion allows one researcher to compare his/her own results to earlier work from other labs. An essential prerequisite for this is that the experiments are done in identical conditions and therefore the methodology must be clearly stated. While this may be scientific common sense, adherence is difficult because “standard” methods vary from one laboratory to another in subtle ways that are often not reported. More importantly, for many years the field of yeast meiotic recombination considered typical differences to be innocuous. This chapter will highlight the documented environmental and genetic variables that are known to influence meiotic recombination in Saccharomyces cerevisiae. Other potential methodological sources of variation in meiotic experiments are also discussed. A careful assessment of the effects of these variables, has led to insights into our understanding of the control of recombination and meiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fogel, S. and Hurst, D. D. (1967) Meiotic gene conversion in yeast tetrads and the theory of recombination. Genetics 57, 455–481.

    PubMed  CAS  Google Scholar 

  2. Resnick, M. A. (1976) The repair of double-strand breaks in DNA: a model involving recombination. J. Theor. Biol. 59, 97–106.

    Article  PubMed  CAS  Google Scholar 

  3. Orr-Weaver, T. L. and Szostak, J. W. (1985) Fungal recombination. Microbiol. Rev. 49, 33–58.

    PubMed  CAS  Google Scholar 

  4. Szostak, J. W., Orr-Weaver, T. L., Rothstein, R. J., and Stahl, F. W. (1983) The double-strand-break repair model for recombination. Cell 33, 25–35.

    Article  PubMed  CAS  Google Scholar 

  5. Gilbertson, L. A. and Stahl, F. W. (1996) A test of the double-strand break model for meiotic recombination in Saccharomyces cerevisiae. Genetics 144, 27–41.

    PubMed  CAS  Google Scholar 

  6. Borts, R. H., Lichten, M., Hearn, M., Davidow, L. S., and Haber, J. E. (1984) Physical monitoring of meiotic recombination in Saccharomyces cerevisiae. Cold Spring Harbor Symp. Quant. Biol. 49, 67–76.

    Article  PubMed  CAS  Google Scholar 

  7. Borts, R. H., Lichten, M., and Haber, J. E. (1986) Analysis of meiosis-defective mutations in yeast by physical monitoring of recombination. Genetics 113, 551–567.

    PubMed  CAS  Google Scholar 

  8. Alani, E., Padmore, R., and Kleckner, N. (1990) Analysis of wild-type and rad50 mutants of yeast suggests an intimate relationship between meiotic chromosome synapsis and recombination. Cell 61, 419–436.

    Article  PubMed  CAS  Google Scholar 

  9. Schwacha, A. and Kleckner, N. (1994) Identification of joint molecules that form frequently between homologs but rarely between sister chromatids during yeast meiosis. Cell 76, 51–63.

    Article  PubMed  CAS  Google Scholar 

  10. Hunter, N. and Kleckner, N. (2001) The single-end invasion: an asymmetric intermediate at the double-strand break to double-Holliday junction transition of meiotic recombination. Cell 106, 59–70.

    Article  PubMed  CAS  Google Scholar 

  11. Borner, G. V., Kleckner, N., and Hunter, N. (2004) Crossover/noncrossover differentiation, synaptonemal complex formation, and regulatory surveillance at the leptotene/zygotene transition of meiosis. Cell 117, 29–45.

    Article  PubMed  Google Scholar 

  12. Sun, H., Treco, D., and Szostak, J. (1991) Extensive 3′-overhanging, single-stranded DNA associated with the meiosis-specific double-strand breaks at the ARG4 recombination initiation site. Cell 64, 1155–1161.

    Article  PubMed  CAS  Google Scholar 

  13. Cao, L., Alani, E., and Kleckner, N. (1990) A pathway for generation and processing of double-strand breaks during meiotic recombination in S. cerevisiae. Cell 61, 1089–1101.

    Article  PubMed  CAS  Google Scholar 

  14. Schwacha, A. and Kleckner, N. (1995) Identification of double Holliday junctions as intermediates in meiotic recombination. Cell 83, 738–791.

    Article  Google Scholar 

  15. Storlazzi, A., Liuzhong, X., and Kleckner, N. (1995) Crossover and noncrossover recombination during meioisis:timing and pathway relationships. Proc. Natl. Acad. Sci. 92, 8512–8516.

    Article  PubMed  CAS  Google Scholar 

  16. Goyon, C. and Lichten, M. (1993) Timing of molecular events in meiosis in Saccharomyces cerevisiae: stable heteroduplex is formed late in meiotic prophase. Mol. Cell. Biol. 13, 373–382.

    PubMed  CAS  Google Scholar 

  17. Allers, T. and Lichten, M. (2001) Intermediates of yeast meiotic recombination contain heteroduplex DNA. Mol. Cell. 8, 225–231.

    Article  PubMed  CAS  Google Scholar 

  18. Allers, T. and Lichten, M. (2001) Differential timing and control of noncrossover and crossover recombination during meiosis. Cell 106, 47–57.

    Article  PubMed  CAS  Google Scholar 

  19. Nachman, I., Regev, A., and Ramanathan, S. (2007) Dissecting timing variability in yeast meiosis. Cell 131, 544–556.

    Article  PubMed  CAS  Google Scholar 

  20. de los Santos, T., Loidl, J., Larkin, B., and Hollingsworth, N. M. (2001) A role for MMS4 in the processing of recombination intermediates during meiosis in Saccharomyces cerevisiae. Genetics 159, 1511–1525.

    Google Scholar 

  21. de los Santos, T., Hunter, N., Lee, C., Larkin, B., Loidl, J., and Hollingsworth, N. M. (2003) The Mus81/Mms4 endonuclease acts independently of double-Holliday junction resolution to promote a distinct subset of crossovers during meiosis in budding yeast. Genetics 164, 81–94.

    Google Scholar 

  22. Merker, J. D., Dominska, M., and Petes, T. D. (2003) Patterns of heteroduplex formation associated with the initiation of meiotic recombination in the yeast Saccharomyces cerevisiae. Genetics 165, 47–63.

    PubMed  CAS  Google Scholar 

  23. Jessop, L., Allers, T., and Lichten, M. (2005) Infrequent co-conversion of markers flanking a meiotic recombination initiation site in Saccharomyces cerevisiae. Genetics 169, 1353–1367.

    Article  PubMed  CAS  Google Scholar 

  24. Hoffmann, E. R., Eriksson, E., Herbert, B. J., and Borts, R. H. (2005) MLH1 and MSH2 promote the symmetry of double-strand break repair events at the HIS4 hotspot in Saccharomyces cerevisiae. Genetics 163, 1292–1303.

    Google Scholar 

  25. Schultes, N. P. and Szostak, J. W. (1990) Decreasing gradients of gene conversion on both sides of the initiation site for meiotic recombination at the ARG4 locus in yeast. Genetics 126, 813–822.

    PubMed  CAS  Google Scholar 

  26. Khazanehdari, K. and Borts, R. H. (2000) EXO1 and MSH4 differentially affect crossing-over and segregation. Chromosoma 109, 94–102.

    Article  PubMed  CAS  Google Scholar 

  27. Borts, R. H., Chambers, S. R., and Abdullah, M. F. F. (2000) The many faces of mismatch repair in meiosis. Mutat. Res. 451, 129–150.

    Article  PubMed  CAS  Google Scholar 

  28. Kirkpatrick, D. T., Dominska, M., and Petes, T. D. (1998) Conversion-type and restoration-type repair of DNA mismatches formed during meiotic recombination in Saccharomyces cerevisiae. Genetics 149, 1693–1705.

    PubMed  CAS  Google Scholar 

  29. Roth, R. and Halvorson, H. O. (1969) Sporulation of yeast harvested during logarithmic growth. J. Bact. 98, 831–832.

    PubMed  CAS  Google Scholar 

  30. Padmore, R., Cao, L., and Kleckner, N. (1991) Temporal analysis of reciprocal recombination and synaptonemal complex morphogenesis during meiosis in S. cerevisiae. Cell 66, 1239–1256.

    Article  PubMed  CAS  Google Scholar 

  31. Kane, S. and Roth, R. (1974) Carbohydrate metabolism during ascospore development in yeast. J. Bact. 118, 8–14.

    PubMed  CAS  Google Scholar 

  32. Deutschbauer, A. M. and Davis, R. W. (2005) Quantitative trait loci mapped to single-nucleotide resolution in yeast. Nat. Genet. 37, 1333–1340.

    Article  PubMed  CAS  Google Scholar 

  33. Codon, A. C., Gasent-Ramirez, J. M., and Benitez, T. (1995) Factors which affect the frequency of sporulation and tetrad formation in Saccharomyces cerevisiae baker’s yeasts. Appl. Environ. Microbiol. 61, 630–638.

    PubMed  CAS  Google Scholar 

  34. Rockmill, B. personal communication.

    Google Scholar 

  35. Borts, R. H. and Haber, J. E. (1989) Length and distribution of meiotic gene conversion tracts and crossovers in Saccharomyces cerevisiae. Genetics 123, 69–80.

    PubMed  CAS  Google Scholar 

  36. Borts, R. H., Leung, W.-Y., Kramer, K., Kramer, B., Williamson, M. S., Fogel, S., and Haber, J. E. (1990) Mismatch repair-induced meiotic recombination requires the PMS1 gene product. Genetics 124, 573–584.

    PubMed  CAS  Google Scholar 

  37. Hunter, N. and Borts, R. H. (1997) Mlh1p is unique among mismatch repair proteins in its ability to promote crossing-over during meiosis. Genes & Dev. 11, 1573–1582.

    Article  CAS  Google Scholar 

  38. Abdullah, M. F. F. and Borts, R. H. (2001) Meiotic recombination frequencies are affected by nutritional states in Saccharomyces cerevisiae. Proc. Nat. Acad. Sci. 98, 14524–14529.

    Article  PubMed  CAS  Google Scholar 

  39. Symington, L. S. and Petes, T. D. (1988) Expansions and contractions of the genetic map relative to the physical map of yeast chromosome III. Mol. Cell. Biol. 8, 595–604.

    PubMed  CAS  Google Scholar 

  40. Detloff, P., White, M. A., and Petes, T. D. (1992) Analysis of a gene conversion gradient at the HIS4 locus in Saccharomyces cerevisaie. Genetics 132, 113–123.

    PubMed  CAS  Google Scholar 

  41. Detloff, P., Sieber, J., and Petes, T. (1991) Repair of specific base pair mismatches during meiotic recombination in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 11, 737–745.

    PubMed  CAS  Google Scholar 

  42. Nicolas, A., Treco, D., Schultes, N. P., and Szostak, J. W. (1989) An initiation site for meiotic gene conversion in the yeast Saccharomyces cerevisiae. Nature 338, 35–39.

    Article  PubMed  CAS  Google Scholar 

  43. Treco, D., Thomas, B., and Arnheim, N. (1985) Recombination hot spot in the human beta-globin gene cluster: meiotic recombination of human DNA fragments in Saccharomyces cerevisiae. Mol. Cell. Biol. 5, 2029–2038.

    PubMed  CAS  Google Scholar 

  44. Ben-Ari, G., Zenvirth, D., Sherman, A., David, L., Klutstein, M., Lavi, U., Hillel, J., and Simchen, G. (2006) Four linked genes participate in controlling sporulation efficiency in budding yeast. PLoS Genet. 2, 1815–1823.

    Article  CAS  Google Scholar 

  45. Primig, M., Williams, R. M., Winzeler, E. A., Tevzadze, G. G., Conway, A. R., Hwang, S. Y., Davis, R. W., and Esposito, R. E. (2000) The core meiotic transcriptome in budding yeasts. Nat. Genet. 26, 415–423.

    Article  PubMed  CAS  Google Scholar 

  46. Liti, G., Carter, D. M., Moses, A. M., Warringer, J., Parts, L., James, S. A., Davey, R. P., Roberts, I. N., Burt, A., Koufopanou, V., Tsai, I. J., Bergman, C. M., Bensasson, D., O’Kelly, M. J., van Oudenaarden, A., Barton, D. B., Bailes, E., Nguyen, A. N., Jones, M., Quail, M. A., Goodhead, I., Sims, S., Smith, F., Blomberg, A., Durbin, R., and Louis, E. J. (2009) Nature 458, 337–341.

    Google Scholar 

  47. Hoffmann, E. R. and Borts, R. H. unpublished observations.

    Google Scholar 

  48. Nakagawa, T. and Ogawa, H. (1999) The Saccharomyces cerevisiae MER3 gene, encoding a novel helicase-like protein, is required for crossover control in meiosis. EMBO J 18, 5714–5723.

    Article  PubMed  CAS  Google Scholar 

  49. Tsubouchi, H. and Ogawa, H. (2000) Exo1 roles for repair of DNA double-strand breaks and meiotic crossing over in Saccharomyces cerevisiae. Mol. Bio. Cell 11, 2221–2233.

    Google Scholar 

  50. Sym, M., Engebrecht, J. A., and Roeder, G. S. (1993) ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell 72, 365–378.

    Article  PubMed  CAS  Google Scholar 

  51. Novak, J. E., Ross-Macdonald, P. B., and Roeder, G. S. (2001) The budding yeast Msh4 protein functions in chromosome synapsis and the regulation of crossover distribution. Genetics 158, 1013–1025.

    PubMed  CAS  Google Scholar 

  52. Hoffmann, E. R., Shcherbakova, P. V., Kunkel, T. A., and Borts, R. H. (2003) MLH1 mutations differentially affect meiotic functions in Saccharomyces cerevisiae. Genetics 163, 515–526.

    PubMed  CAS  Google Scholar 

  53. Abdullah, M. F., Hoffmann, E. R., Cotton, V. E., and Borts, R. H. (2004) A role for the MutL homologue MLH2 in controlling heteroduplex formation and in regulating between two different crossover pathways in budding yeast. Cytogenet. Genome. Res. 107, 180–190.

    Article  PubMed  CAS  Google Scholar 

  54. Stone, J. E. and Petes, T. D. (2006) Analysis of the proteins involved in the in vivo repair of base-base mismatches and four-base loops formed during meiotic recombination in the yeast Saccharomyces cerevisiae. Genetics 173, 1223–1239.

    Article  PubMed  CAS  Google Scholar 

  55. Alani, A., Reenan, R. A., and Kolodner, R. D. (1994) Interaction between mismatch repair and genetic recombination in Saccharomyces cerevisiae. Genetics 137, 19–39.

    PubMed  CAS  Google Scholar 

  56. Rockmill, B., Sym, M., Schertan, H., and Roeder, G. S. (1995) Roles for two RecA homologs in promoting meiotic chromosome synapsis. Genes & Dev. 9, 2648–2695.

    Google Scholar 

  57. Turney, D., de Los Santos, T., and Hollingsworth, N. M. (2004) Does chromosome size affect map distance and genetic interference in budding yeast? Genetics 168, 2421–2424.

    Article  PubMed  CAS  Google Scholar 

  58. Oh, S. D., Lao, J. P., Hwang, P. Y., Taylor, A. F., Smith, G. R., and Hunter, N. (2007) BLM ortholog, Sgs1, prevents aberrant crossing-over by suppressing formation of multichromatid joint molecules. Cell 130, 259–272.

    Article  PubMed  CAS  Google Scholar 

  59. Martini, E., Diaz, R. L., Hunter, N., and Keeney, S. (2006) Crossover homeostasis in yeast meiosis. Cell 126, 285–295.

    Article  PubMed  CAS  Google Scholar 

  60. Argueso, J. L., Kijas, A. W., Sarin, S., Heck, J., Waase, M., and Alani, E. (2003) Systematic mutagenesis of the Saccharomyces cerevisiae MLH1 gene reveals distinct roles for Mlh1p in meiotic crossing over and in vegetative and meiotic mismatch repair. Mol. Cell. Biol. 23, 873–886.

    Article  PubMed  CAS  Google Scholar 

  61. Argueso, J. L., Wanat, J., Gemici, Z., and Alani, E. (2004) Competing crossover pathways act during meiosis in Saccharomyces cerevisiae. Genetics 168, 1805–1816.

    Article  PubMed  CAS  Google Scholar 

  62. Stahl, F. W., Foss, H. M., Young, L. S., Borts, R. H., Abdullah, M. F., and Copenhaver, G. P. (2004) Does crossover interference count in Saccharomyces cerevisiae? Genetics 168, 35–48.

    Article  PubMed  CAS  Google Scholar 

  63. Kaback, D. B., Barber, D., Mahon, J., Lamb, J., and You, J. (1999) Chromosome size-dependent control of meiotic reciprocal recombination in Saccharomyces cerevisiae: the role of crossover interference. Genetics 152, 1475–1486.

    PubMed  CAS  Google Scholar 

  64. Cotton, V. (2007) A structural and functional analysis of mismatch repair proteins in meiosis. University of Leicester Ph. D., Leicester.

    Google Scholar 

  65. Hoffmann, E. R. and Borts, R. H. (2004) Meiotic recombination intermediates and mismatch repair proteins. Cytogenet. Genome. Res. 107, 232–248.

    Article  PubMed  CAS  Google Scholar 

  66. Esposito, R. E. and Klapholz, S. (1981) Meiosis and ascospore development, in The molecular biology of the yeast Saccharomyces, vol. 1 (Strathern, J. N., Jones, E. W., and Broach, J. R., eds.), Cold Spring Harbor Laboratory, Cold Spring Harbor, pp. 211–287.

    Google Scholar 

  67. Kassir, Y. and Simchen, G. (1991) Monitoring meiosis and sporulation in Saccharomyces cerevisiae. Meth. Enzymol. 194, 94–110.

    Article  PubMed  CAS  Google Scholar 

  68. Resnick, M. A., Stasiewicz, S., and Game, J. C. (1983) Meiotic DNA metabolism in wild-type and excision-deficient yeast following UV exposure. Genetics 104, 583–601.

    PubMed  CAS  Google Scholar 

  69. Blitzblau, H. G., Bell, G. W., Rodriguez, J., Bell, S. P., and Hochwagen, A. (2007) Mapping of meiotic single-stranded DNA reveals double-strand break hotspots near centromeres and telomeres. Curr. Biol. 17, 2003–2012.

    Google Scholar 

  70. White, M. A., Detloff, P., Strand, M., and Petes, T. D. (1992) A promoter deletion reduces the rate of mitotic, but not meiotic, recombination at the HIS4 locus in yeast. Curr. Genet. 21, 109–116.

    Article  PubMed  CAS  Google Scholar 

  71. White, M. A., Dominska, M., and Petes, T. D. (1993) Transcription factors are required for the meiotic recombination hotspot at the HIS4 locus in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 90, 6621–6625.

    Article  PubMed  CAS  Google Scholar 

  72. Fan, Q., Xu, F., and Petes, T. D. (1995) Meiosis-specific double-strand breaks at the HIS4 recombination hotspot in the yeast Saccharomyces cerevisiae: control in cis and trans. Mol. Cell. Biol. 15, 1679–1688.

    PubMed  CAS  Google Scholar 

  73. Mieczkowski, P. A., Dominska, M., Buck, M. J., Gerton, J. L., Lieb, J. D., and Petes, T. D. (2006) Global analysis of the relationship between the binding of the Bas1p transcription factor and meiosis-specific double-strand DNA breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 26, 1014–1027.

    Article  PubMed  CAS  Google Scholar 

  74. Hinnebusch, A. G. and Natarajan, K. (2002) Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot. Cell 1, 22–32.

    Article  PubMed  CAS  Google Scholar 

  75. Chua, P. R. and Roeder, G. S. (1998) Zip2, a meiosis-specific protein required for the initiation of chromosome synapsis. Cell 93, 349–359.

    Article  PubMed  CAS  Google Scholar 

  76. Hochwagen, A., Tham, W. H., Brar, G. A., and Amon, A. (2005) The FK506 binding protein Fpr3 counteracts protein phosphatase 1 to maintain meiotic recombination checkpoint activity. Cell 122, 861–873.

    Article  PubMed  CAS  Google Scholar 

  77. Marston, A. L., Tham, W. H., Shah, H., and Amon, A. (2004) A genome-wide screen identifies genes required for centromeric cohesion. Science 303, 1367–1370.

    Article  PubMed  CAS  Google Scholar 

  78. Blunt and Hoffman, E. R. (2007) personal communication.

    Google Scholar 

  79. Kubinyi, H. (1999) Chance favors the prepared mind--from serendipity to rational drug design. J. Recept. Signal. Transduct. Res. 19, 15–39.

    Article  PubMed  CAS  Google Scholar 

  80. Robine, N., Uematsu, N., Amiot, F., Gidrol, X., Barillot, E., Nicolas, A., and Borde, V. (2007) Genome-wide redistribution of meiotic double-strand breaks in S. cerevisiae. Mol. Cell. Biol. 27, 1868–1880.

    Google Scholar 

  81. Sherman, F., Fink, G. R., and Hicks, J. B. (1986) Methods in yeast genetics, Cold Spring Harbor Laboratory, Plainview, NY.

    Google Scholar 

  82. Campbell, D. A., Fogel, S., and Lusnak, K. (1975) Mitotic chromosome loss in a disomic haploid of S. cerevisiae. Genetics 79, 383–396.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank all of our colleagues for their prompt responses to our many requests for the details of their sporulation protocols. We would also like to thank Rebecca Keelagher, Amit Dipak Amin and Robert Mason for technical assistance. R.H.B is a Royal Society/Wolfson Foundation Research Merit Award Holder. E.R.H. is a Royal Society Dorothy Hodgkin Fellow. The unpublished work was supported by the Wellcome Trust and the MRC.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cotton, V.E., Hoffmann, E.R., Abdullah, M.F., Borts, R.H. (2009). Interaction of Genetic and Environmental Factors in Saccharomyces cerevisiae Meiosis: The Devil is in the Details. In: Keeney, S. (eds) Meiosis. Methods in Molecular Biology, vol 557. Humana Press. https://doi.org/10.1007/978-1-59745-527-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-527-5_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-66-4

  • Online ISBN: 978-1-59745-527-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics