Skip to main content

Computational Modeling of Biochemical Networks Using COPASI

  • Protocol
  • First Online:
Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 500))

Summary

Computational modeling and simulation of biochemical networks is at the core of systems biology and this includes many types of analyses that can aid understanding of how these systems work. COPASI is a generic software package for modeling and simulation of biochemical networks which provides many of these analyses in convenient ways that do not require the user to program or to have deep knowledge of the numerical algorithms. Here we provide a description of how these modeling techniques can be applied to biochemical models using COPASI. The focus is both on practical aspects of software usage as well as on the utility of these analyses in aiding biological understanding. Practical examples are described for steady-state and time-course simulations, stoichiometric analyses, parameter scanning, sensitivity analysis (including metabolic control analysis), global optimization, parameter estimation, and stochastic simulation. The examples used are all published models that are available in the BioModels database in SBML format.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garfinkel, D., Marbach, C. B., and Shapiro, N. Z. (1977) Stiff differential equations. Ann. Rev. Biophys. Bioeng. 6, 525–542.

    Article  CAS  Google Scholar 

  2. Petzold, L. (1983) Automatic selection of methods for solving stiff and nonstiff systems of ordinary differential equations. SIAM J. Sci. Stat. Comput. 4, 136–148.

    Article  Google Scholar 

  3. Gillespie, D. T. (1976) A general method for numerically simulating the stochastic time evolution of coupled chemical reactions. J. Comput. Phys. 22, 403–434.

    Article  CAS  Google Scholar 

  4. Gillespie, D. T. (1977) Exact stochastic simulation of coupled chemical reactions. J. Phys. Chem. 81, 2340–2361.

    Article  CAS  Google Scholar 

  5. Gillespie, D. T. (2007) Stochastic simulation of chemical kinetics. Ann. Rev. Phys. Chem. 58, 35–55.

    Article  CAS  Google Scholar 

  6. Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., and Kummer, U. (2006) COPASI – a COmplex PAthway SImulator. Bioinformatics 22, 3067–3074.

    Article  PubMed  CAS  Google Scholar 

  7. Le Novere, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H., Li, L., Sauro, H., Schilstra, M., Shapiro, B., Snoep, J. L., and Hucka, M. (2006) BioModels Database: a free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Res. 34, D689–D691.

    Article  PubMed  CAS  Google Scholar 

  8. Kholodenko, B. N. (2000) Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur. J. Biochem. 267, 1583–1588.

    Article  PubMed  CAS  Google Scholar 

  9. Curien, G., Ravanel, S., and Dumas, R. (2003) A kinetic model of the branch-point between the methionine and threonine biosynthesis pathways in Arabidopsis thaliana. Eur. J. Biochem. 270, 4615–4627.

    Article  PubMed  CAS  Google Scholar 

  10. Schuster, S. and Hilgetag, C. (1994) On elementary flux modes in biochemical reaction systems at steady state. J. Biol. Syst. 2, 165–182.

    Article  Google Scholar 

  11. Schuster, S., Fell, D. A., and Dandekar, T. (2000) A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic networks. Nat. Biotechnol. 18, 326–332.

    Article  PubMed  CAS  Google Scholar 

  12. Reder, C. (1988) Metabolic control theory. A structural approach. J. Theor. Biol. 135, 175–201.

    Article  PubMed  CAS  Google Scholar 

  13. Holzhütter, H. G. (2004) The principle of flux minimization and its application to estimate stationary fluxes in metabolic networks. Eur. J. Biochem. 271, 2905–2922.

    Article  PubMed  Google Scholar 

  14. Kacser, H. and Burns, J. A. (1973) The control of flux. Symp. Soc. Exp. Biol. 27, 65–104.

    PubMed  CAS  Google Scholar 

  15. Heinrich, R. and Rapoport, T. A. (1974) A linear steady-state treatment of enzymatic chains. General properties, control and effector strength. Eur. J. Biochem. 42, 89–95.

    Article  PubMed  CAS  Google Scholar 

  16. Fell, D. A. (1992) Metabolic control analysis – a survey of its theoretical and experimental development. Biochem. J. 286, 313–330.

    PubMed  CAS  Google Scholar 

  17. Heinrich, R. and Schuster, S. (1996) The Regulation of Cellular Systems. Chapman & Hall, New York, NY.

    Google Scholar 

  18. Fell, D. A. (1996) Understanding the Control of Metabolism. Portland Press, London.

    Google Scholar 

  19. Cascante, M., Boros, L. G., Comin-Anduix, B., de Atauri, P., Centelles, J. J., and Lee, P. W. (2002) Metabolic control analysis in drug discovery and disease. Nat. Biotechnol. 20, 243–249.

    Article  PubMed  CAS  Google Scholar 

  20. Rohwer, J. M. and Botha, F. C. (2001) Analysis of sucrose accumulation in the sugar cane culm on the basis of in vitro kinetic data. Biochem. J. 358, 437–445.

    Article  PubMed  CAS  Google Scholar 

  21. Höfer, T. and Heinrich, R. (1993) A second-order approach to metabolic control analysis. J. Theor. Biol. 164, 85–102.

    Article  PubMed  Google Scholar 

  22. Mendes, P. and Kell, D. B. (1998) Non-linear optimization of biochemical pathways: applications to metabolic engineering and parameter estimation. Bioinformatics 14, 869–883.

    Article  PubMed  CAS  Google Scholar 

  23. Wolpert, D. H. and Macready, W. G. (1997) No free lunch theorems for optimization. IEEE Trans. Evolut. Comput. 1, 67–82.

    Article  Google Scholar 

  24. Fogel, D. B., Fogel, L. J., and Atmar, J. W. (1992) Meta-evolutionary programming, in 25th Asilomar Conference on Signals, Systems & Computers (Chen, R. R., ed.). IEEE Computer Society, Asilomar, CA, pp. 540–545.

    Google Scholar 

  25. Runarsson, T. and Yao, X. (2000) Stochastic ranking for constrained evolutionary optimization. IEEE Trans. Evolut. Comput. 4, 284–294.

    Article  Google Scholar 

  26. Michalewicz, Z. (1994) Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin.

    Google Scholar 

  27. Hooke, R. and Jeeves, T. A. (1961) “Direct search” solution of numerical and statistical problems. J. ACM 8, 212–229.

    Article  Google Scholar 

  28. Levenberg, K. (1944) A method for the solution of certain nonlinear problems in least squares. Quart. Appl. Math. 2, 164–168.

    Google Scholar 

  29. Goldfeld, S. M., Quant, R. E., and Trotter, H. F. (1966) Maximisation by quadratic hill-climbing. Econometrica 34, 541–555.

    Article  Google Scholar 

  30. Marquardt, D. W. (1963) An algorithm for least squares estimation of nonlinear parameters. SIAM J. 11, 431–441.

    Google Scholar 

  31. Nelder, J. A. and Mead, R. (1965) A simplex method for function minimization. Comput. J. 7, 308–313.

    Google Scholar 

  32. Kennedy, J. and Eberhart, R. (1995) Particle swarm optimization. Proc. IEEE Int. Conf. Neural Netw. 4, 1942–1948.

    Article  Google Scholar 

  33. Brent, P. R. (1973) A new algorithm for minimizing a function of several variables without calculating derivatives, in Algorithms for Minimization Without Derivatives (Brent, P. R., ed.). Prentice-Hall, Englewood Cliffs, NJ, pp. 117–167.

    Google Scholar 

  34. Corana, A., Marchesi, M., Martini, C., and Ridella, S. (1987) Minimizing multimodal functions of continuous variables with the “simulated annealing” algorithm. ACM Trans. Math. Softw. 13, 262–280.

    Article  Google Scholar 

  35. Nash, S. G. (1984) Newton-type minimization via the Lanczos method. SIAM J. Numer. Anal. 21, 770–788.

    Article  Google Scholar 

  36. Johnson, M. L. and Faunt, L. M. (1992) Parameter estimation by least-squares methods. Methods Enzymol. 210, 1–37.

    Article  PubMed  CAS  Google Scholar 

  37. Gibson, M. A. and Bruck, J. (2000) Efficient exact stochastic simulation of chemical systems with many species and many channels. J. Phys. Chem. A 104, 1876–1889.

    Article  CAS  Google Scholar 

  38. Goldbeter, A., Dupont, G., and Berridge, M. J. (1990) Minimal model for signal-induced Ca2+ oscillations and for their frequency encoding through protein phosphorylation. Proc. Natl Acad. Sci. USA 87, 1461–1465.

    Article  PubMed  CAS  Google Scholar 

  39. Rao, C. V. and Arkin, A. P. (2003) Stochastic chemical kinetics and the quasi-steady-state assumption: application to the Gillespie algorithm. J. Chem. Phys. 118, 4999–5010.

    Article  CAS  Google Scholar 

  40. Cao, Y., Gillespie, D., and Petzold, L. (2005) Multiscale stochastic simulation algorithm with stochastic partial equilibrium assumption for chemically reacting systems. J. Comput. Phys. 206, 395–411.

    Article  CAS  Google Scholar 

  41. Acerenza, L., Sauro, H. M., and Kacser, H. (1989) Control analysis of time dependent metabolic systems. J. Theor. Biol. 137, 423–444.

    Article  PubMed  CAS  Google Scholar 

  42. Ingalls, B. P. and Sauro, H. M. (2003) Sensitivity analysis of stoichiometric networks: an extension of metabolic control analysis to non-steady state trajectories. J. Theor. Biol. 222, 23–36.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the users of COPASI whose feedback on the software is crucial for its continued improvement. We also thank all developers who have actively contributed to COPASI. COPASI development is supported financially by generous funding from the US National Institute for General Medical Sciences (GM080219), the Virginia Bioinformatics Institute, the Klaus Tschira Foundation, the German Ministry of Education and Research (BMBF), and the UK BBSRC/EPSRC through The Manchester Centre for Integrative Systems Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Mendes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press

About this protocol

Cite this protocol

Mendes, P., Hoops, S., Sahle, S., Gauges, R., Dada, J., Kummer, U. (2009). Computational Modeling of Biochemical Networks Using COPASI. In: Maly, I. (eds) Systems Biology. Methods in Molecular Biology, vol 500. Humana Press. https://doi.org/10.1007/978-1-59745-525-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-525-1_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-934115-64-0

  • Online ISBN: 978-1-59745-525-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics